在正方形ABCD中,E是AB的中點(diǎn),BF⊥CE于F,那么S△BFC:S正方形ABCD   
【答案】分析:首先根據(jù)題意畫(huà)出圖形,然后根據(jù)△BCF∽△ECB及勾股定理求出相似比,得出面積比,又S△EBC=S正方形ABCD,從而求出S△BFC:S正方形ABCD的值.
解答:解:設(shè)正方形ABCD的邊長(zhǎng)為2a,
∵E是AB的中點(diǎn),
∴BE=a,
∴CE==a,
∵BF⊥CE,
∴∠EBC=∠BFC=90°,
∵∠ECB=∠BCF,
∴△BCF∽△EBC.
∴BC:EC=2:
∴S△BFC:S△EBC=4:5.
∵S正方形ABCD=4S△EBC
∴S△BFC:S正方形ABCD=1:5.
故答案為:1:5.
點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì)、正方形的性質(zhì)以及勾股定理.此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖所示,在正方形ABCD中,E為AD的中點(diǎn),F(xiàn)為DC上的一點(diǎn),且DF=
14
DC.求證:△BEF是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、在正方形ABCD中,點(diǎn)G是BC上任意一點(diǎn),連接AG,過(guò)B,D兩點(diǎn)分別作BE⊥AG,DF⊥AG,垂足分別為E,F(xiàn)兩點(diǎn),求證:△ADF≌△BAE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•黑河)如圖1,在正方形ABCD中,點(diǎn)M、N分別在AD、CD上,若∠MBN=45°,易證MN=AM+CN
(1)如圖2,在梯形ABCD中,BC∥AD,AB=BC=CD,點(diǎn)M、N分別在AD、CD上,若∠MBN=
1
2
∠ABC,試探究線段MN、AM、CN有怎樣的數(shù)量關(guān)系?請(qǐng)寫(xiě)出猜想,并給予證明.
(2)如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點(diǎn)M、N分別在DA、CD的延長(zhǎng)線上,若∠MBN=
1
2
∠ABC,試探究線段MN、AM、CN又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、在正方形ABCD中,P為對(duì)角線BD上一點(diǎn),PE⊥BC,垂足為E,PF⊥CD,垂足為F,求證:EF=AP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方形ABCD中,P是CD上一點(diǎn),且AP=BC+CP,Q為CD中點(diǎn),求證:∠BAP=2∠QAD.

查看答案和解析>>

同步練習(xí)冊(cè)答案