14.如圖,四邊形ABCD中,AB∥DC,∠B=90°,F(xiàn)為DC上一點(diǎn),且FC=AB,E為AD上一點(diǎn),EC交AF于點(diǎn)G.
(1)求證:四邊形ABCF是矩形;
(2)若ED=EC,求證:EA=EG.

分析 (1)先證明四邊形ABCF是平行四邊形.再由∠B=90°,即可得出四邊形ABCF是矩形.
(2)由等腰三角形的性質(zhì)得出∠D=∠ECD,證出∠EAG=∠EGA,即可得出結(jié)論.

解答 (1)證明:∵AB∥DC,F(xiàn)C=AB,
∴四邊形ABCF是平行四邊形.
∵∠B=90°,
∴四邊形ABCF是矩形.
(2)證明:由(1)可得,∠AFC=90°,
∴∠DAF=90°-∠D,∠CGF=90°-∠ECD.  
∵ED=EC,
∴∠D=∠ECD.
∴∠DAF=∠CGF.
∵∠EGA=∠CGF,
∴∠EAG=∠EGA.
∴EA=EG.

點(diǎn)評(píng) 本題考查了矩形的判定、平行四邊形的判定、等腰三角形的判定與性質(zhì);熟練掌握矩形的判定,由角的關(guān)系證出∠EAG=∠EGA是解決問(wèn)題(2)的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若x2+kxy+16y2是一個(gè)完全平方式,那么k的值為( 。
A.4B.8C.±8D.±16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,兩棵大樹(shù)AB、CD,它們根部的距離AC=4m,小強(qiáng)沿著正對(duì)這兩棵樹(shù)的方向前進(jìn).如果小強(qiáng)的眼睛與地面的距離為1.6m,小強(qiáng)在P處時(shí)測(cè)得B的仰角為20.3°,當(dāng)小強(qiáng)前進(jìn)5m達(dá)到Q處時(shí),視線(xiàn)恰好經(jīng)過(guò)兩棵樹(shù)的頂端B和D,此時(shí)仰角為36.42°.
(1)求大樹(shù)AB的高度;
(2)求大樹(shù)CD的高度.
(參考數(shù)據(jù):sin20.3°≈0.35,cos20.3°≈0.94,tan20.3°≈0.37;sin36.42°≈0.59,cos36.42°≈0.80,tan36.42°≈0.74)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知△ABC∽△A′B′C′,$\frac{AB}{A′B′}$=$\frac{BC}{B′C′}$=$\frac{CA}{C′A′}$=k,求證:$\frac{{C}_{△ABC}}{C△A′B′C′}$=k.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.小明想了解全校3000名同學(xué)對(duì)新聞、體育、音樂(lè)、娛樂(lè)、戲曲五類(lèi)電視節(jié)目的喜愛(ài)況,從中抽取了一部分同學(xué)進(jìn)行了一次抽樣調(diào)查,利用所得數(shù)據(jù)繪制成下面的統(tǒng)計(jì)圖:根據(jù)圖中所給信息:

(1)計(jì)算a=36,b=20;
(2)補(bǔ)全直方圖;
(3)估計(jì)全校喜歡娛樂(lè)類(lèi)節(jié)目的學(xué)生大約有多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,四邊形ABCD是平行四邊形,點(diǎn)A(1,0),B(3,1),C(3,3).反比例函數(shù)y=$\frac{m}{x}$(x>0)的圖象經(jīng)過(guò)點(diǎn)D.(1,2)
(1)求反比例函數(shù)的解析式;
(2)經(jīng)過(guò)點(diǎn)C的一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)的圖象交于P點(diǎn),當(dāng)k>0時(shí),確定點(diǎn)P橫坐標(biāo)的取值范圍(不必寫(xiě)出過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.先化簡(jiǎn),再求值:$\frac{x}{{{x^2}-1}}÷\frac{x^2}{{{x^2}+x}}$,其中-1≤x≤2,且x是整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在平行四邊形ABCD中,三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-5,0),B(4,1),C(2,5),請(qǐng)求出第四個(gè)頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,拋物線(xiàn)與x軸交于A(x1,0),B(x2,0)兩點(diǎn),且x1<x2,與y軸交于點(diǎn)C(0,-5),其中x1,x2是方程x2-4x-5=0的兩個(gè)根.
(1)求這條拋物線(xiàn)的解析式;
(2)點(diǎn)M是線(xiàn)段AB上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M作MN∥BC,交AC于點(diǎn)N,連接CM,當(dāng)△CMN的面積最大時(shí),求點(diǎn)M的坐標(biāo);
(3)點(diǎn)D(4,k)在(1)中拋物線(xiàn)上,點(diǎn)E為拋物線(xiàn)上一動(dòng)點(diǎn),在x軸是否存在點(diǎn)F,使以A,D,E,F(xiàn)四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,直接寫(xiě)出所有滿(mǎn)足條件的點(diǎn)F的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案