2.已知△ABC∽△A′B′C′,$\frac{AB}{A′B′}$=$\frac{BC}{B′C′}$=$\frac{CA}{C′A′}$=k,求證:$\frac{{C}_{△ABC}}{C△A′B′C′}$=k.

分析 根據(jù)題意把已知等式變形,代入計(jì)算即可.

解答 證明:∵$\frac{AB}{A′B′}$=$\frac{BC}{B′C′}$=$\frac{CA}{C′A′}$=k,
∴AB=kA′B′,BC=kB′C′,AC=kA′C′,
則$\frac{{C}_{△ABC}}{C△A′B′C′}$=$\frac{AB+BC+CA}{A′B′+B′C′+C′A′}$=$\frac{k(A′B′+B′C′+C′A′)}{A′B′+B′C′+C′A′}$=k.

點(diǎn)評(píng) 本題考查的是相似三角形的性質(zhì),掌握比例的性質(zhì)和相似三角形周長(zhǎng)的比等于相似比是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知實(shí)數(shù)x、y滿足y=$\frac{\sqrt{{x}^{2}-9}+\sqrt{9-{x}^{2}}-6}{x+3}$,求$\sqrt{5x+3y}$的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

13.為增強(qiáng)學(xué)生的身體素質(zhì),教育行政部門規(guī)定學(xué)生每天參加戶外活動(dòng)的平均時(shí)間不少于1小時(shí).為了解學(xué)生參加戶外活動(dòng)的情況,對(duì)部分學(xué)生參加戶外活動(dòng)的時(shí)間進(jìn)行抽樣調(diào)查,并將調(diào)查結(jié)果繪制作成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:
(1)一共調(diào)查了多少名學(xué)生;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校共有6000名學(xué)生,根據(jù)以上調(diào)查結(jié)果估計(jì)該校全體學(xué)生每天參與戶外活動(dòng)所用的總時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

10.方程x2-2x-a=0的一個(gè)根是-1,則a=3,另一個(gè)根是3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖1,AB是⊙O的直徑,BC是⊙O的切線,OC∥弦AD,連接BD交AC于E.
(1)求證:CD是⊙O的切線;
(2)如圖2,連AC交BD于E,若AE=CE,求tan∠ACB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知△ABC中,AB=6,AC=BC=5,將△ABC折疊,使點(diǎn)A落在BC邊上的點(diǎn)D處,折痕為EF(點(diǎn)E、F分別在邊AB、AC上).
(1)當(dāng)ED⊥BC時(shí),BE的長(zhǎng)為$\frac{30}{9}$;
(2)當(dāng)以B、E、D為頂點(diǎn)的三角形與△DEF相似時(shí),BE的長(zhǎng)為3或$\frac{14+16\sqrt{3}}{13}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,四邊形ABCD中,AB∥DC,∠B=90°,F(xiàn)為DC上一點(diǎn),且FC=AB,E為AD上一點(diǎn),EC交AF于點(diǎn)G.
(1)求證:四邊形ABCF是矩形;
(2)若ED=EC,求證:EA=EG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.計(jì)算:
(1)(π-5)0+$\sqrt{25}+2×(-3)+{2^{-2}}$
(2)(a+b)2+2a(a-b)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

12.對(duì)于任意的正數(shù)m、n定義運(yùn)算※為:m※n=$\left\{\begin{array}{l}{\sqrt{m}-\sqrt{n}(m>n)}\\{\sqrt{m}+\sqrt{n}(m<n)}\end{array}\right.$,計(jì)算(3※2)×(8※12)的結(jié)果為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案