【題目】已知甲、乙兩地相距90km,A,B兩人沿同一公路從甲地出發(fā)到乙地,A騎摩托車(chē),B騎電動(dòng)車(chē),圖中DE,OC分別表示A,B離開(kāi)甲地的路程skm)與時(shí)間th)的函數(shù)關(guān)系的圖象,根據(jù)圖象解答下列問(wèn)題:

1)請(qǐng)用t分別表示AB的路程sA、sB;

2)在A出發(fā)后幾小時(shí),兩人相距15km?

【答案】1sA45t45sB20t;(2)在A出發(fā)后小時(shí)或小時(shí),兩人相距15km

【解析】

1)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以分別求得st的函數(shù)關(guān)系式;

2)根據(jù)(1)中的函數(shù)解析式可以解答本題.

解:(1)設(shè)sAt的函數(shù)關(guān)系式為sAkt+b,

,得,

sAt的函數(shù)關(guān)系式為sA45t45,

設(shè)sBt的函數(shù)關(guān)系式為sBat,

603a,得a20,

sBt的函數(shù)關(guān)系式為sB20t;

2|45t4520t|15,

解得,t1t2,

,

即在A出發(fā)后小時(shí)或小時(shí),兩人相距15km

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小明為了測(cè)量小河對(duì)岸大樹(shù)BC的高度,他在點(diǎn)A測(cè)得大樹(shù)頂端B的仰角是45°,沿斜坡走米到達(dá)斜坡上點(diǎn)D,在此處測(cè)得樹(shù)頂端點(diǎn)B的仰角為30°,且斜坡AF的坡比為12.則小明從點(diǎn)A走到點(diǎn)D的過(guò)程中,他上升的高度為____米;大樹(shù)BC的高度為____米(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P1(﹣1y1),P22,y2),P35,y3)均在二次函數(shù)y=﹣x2+2x+c的圖象上,則y1,y2,y3的大小關(guān)系是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知⊙O的半徑為5,弦ABCDAB=6,CD=8,則ABCD之間的距離是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的直徑AB=10C、D為⊙O上不同于A、B的兩點(diǎn),OC平分∠ACD,連結(jié)BC,BD

1)求證:OCBD

2)過(guò)點(diǎn)CCEDB,垂足為點(diǎn)E

①求證:△CBE∽△DCE;②若AC=8,求BD的長(zhǎng);

3)直接寫(xiě)出△BCD面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,∠ABC=60°,BC=2QAC上的動(dòng)點(diǎn),PRtABC內(nèi)一動(dòng)點(diǎn),且滿(mǎn)足∠APB=120°,若DBC的中點(diǎn),則PQ+DQ的最小值是( 。

A. B. C. 4D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:經(jīng)過(guò)三角形一邊中點(diǎn),且平分三角形周長(zhǎng)的直線(xiàn)叫做這個(gè)三角形在該邊上的中分線(xiàn),其中落在三角形內(nèi)部的部分叫做中分線(xiàn)段.

1)如圖,△ABC中,ACABDE是△ABCBC邊上的中分線(xiàn)段,FAC中點(diǎn),過(guò)點(diǎn)BDE的垂線(xiàn)交AC于點(diǎn)G,垂足為H,設(shè)ACb,ABc

求證:DFEF;

b6,c4,求CG的長(zhǎng)度;

2)若題(1)中,SBDHSEGH,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yax2bxc的圖象經(jīng)過(guò)點(diǎn)(2,-5),頂點(diǎn)坐標(biāo)為(-1,4),直線(xiàn)l的解析式為y=2x+m.

1)求拋物線(xiàn)的解析式;

2)若拋物線(xiàn)與直線(xiàn)l有兩個(gè)公共點(diǎn),求的取值范圍;

3)若直線(xiàn)l與拋物線(xiàn)只有一個(gè)公共點(diǎn)P,求點(diǎn)P的坐標(biāo);

4)設(shè)拋物線(xiàn)與軸的交點(diǎn)分別為AB,求在(3)的條件下△PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在四邊形ABCD中,ABAD,ABBC,以AB為直徑的OCD相切于點(diǎn)E,連接OCOD

1)求證:OCOD;

2)如圖2,連接ACOE于點(diǎn)M,若AB4,BC1,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案