【題目】如圖,AD是△ABC的角平分線,以AD為弦的⊙O交AB,AC于E,F(xiàn),已知EF∥BC.
(1)求證:BC是⊙O的切線;
(2)若已知AE=9,CF=4,求DE長;
(3)在(2)的條件下,若∠BAC=60°,求tan∠AFE的值及GD長.
【答案】
(1)證明:連接OD,
∵AD是△ABC的角平分線,
∴∠1=∠2,
∴ = ,
∴OD⊥EF,
∵EF∥BC,
∴OD⊥BC,
∴BC是⊙O的切線
(2)解:連接DE,
∵ = ,
∴DE=DF,
∵EF∥BC,
∴∠3=∠4,
∵∠1=∠3,
∴∠1=∠4,
∵∠DFC=∠AED,
∴△AED∽△DFC,
∴ ,即 ,
∴DE2=36,
∴DE=6
(3)解:過F作FH⊥BC于H,
∵∠BAC=60°,
∴∠1=∠2=∠3=∠4=30°,
∴FH= DF= =3,DH=3 ,
∴CH= = ,
∵EF∥BC,
∴∠C=∠AFE,
∴tan∠AFE=tan∠C= = ;
∵∠4=∠2.∠C=∠C,
∴△ADC∽△DFC,
∴ ,
∵∠5=∠5,∠3=∠2,
∴△ADF∽△FDG,
∴ ,
∴ = ,即 = ,
∴DG= .
【解析】(1)連半徑,證垂直。連接OD,由AD是△ABC的角平分線。得出圓周角相等,繼而得弧相等,根據(jù)垂徑定理得出OD⊥EF,再根據(jù)EF∥BC,得到OD⊥BC,即可得證。
(2)先證明DE=DF,再證明△AED∽△DFC,根據(jù)相似三角形的性質(zhì)得對應(yīng)邊成比例,即可求出DE的長。
(3)抓住已知∠BAC=60°,既可以證得∠4=30°,由此添加輔助線過F作FH⊥BC于H,Rt△DFH和Rt△FHC中就可以求出線段FH、DH、CH的長,根據(jù)平行得角相等,即可求出an∠AFE的值,再證明△ADC∽△DFC和△ADF∽△FDG,找到中間比,繼而就可以求出DG的長。
【考點精析】解答此題的關(guān)鍵在于理解垂徑定理的相關(guān)知識,掌握垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧,以及對切線的判定定理的理解,了解切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算題
1、計算、 +()﹣1﹣4tan45° 2、 解方程:x2=3x.
(1)計算: +( )﹣1﹣4tan45°
(2)解方程:x2=3x.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,△OAB的頂點A在x軸正半軸上,OC是△OAB的中線,點B,C在反比例函數(shù)y= (x>0)的圖象上,若△OAB的面積等于6,則k的值為( )
A.2
B.4
C.6
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD折疊,使點C與A點重合,折痕為EF.
(1)判斷四邊形AFCE的形狀,并說明理由.
(2)若AB=4,BC=8,求折痕EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】溫度的變化是人們經(jīng)常談?wù)摰脑掝},請根據(jù)圖象與同伴討論某天溫度變化的情況.
(1)這一天的最高溫度是多少?是在幾時到達的?最低溫度呢?
(2)這一天的溫差是多少?從最低溫度到最高溫度經(jīng)過多長時間?
(3)在什么時間范圍內(nèi)溫度在上升?在什么時間范圍內(nèi)溫度在下降?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,△ABO的頂點坐標(biāo)分別為O(0,0)、A(2a,0)、B(0,﹣a),線段EF兩端點坐標(biāo)為E(﹣m,a+1),F(xiàn)(﹣m,1)(2a>m>a);直線l∥y軸交x軸于P(a,0),且線段EF與CD關(guān)于y軸對稱,線段CD與NM關(guān)于直線l對稱.
(1)求點N、M的坐標(biāo)(用含m、a的代數(shù)式表示);
(2)△ABO與△MFE通過平移能重合嗎?能與不能都要說明其理由,若能請你說出一個平移方案(平移的單位數(shù)用m、a表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,點 D 是邊 BC 上的點(與 B、C 兩點不重合),過點 D作 DE∥AC,DF∥AB,分別交 AB、AC 于 E、F 兩點,下列說法正確的是( )
A. 若 AD 平分∠BAC,則四邊形 AEDF 是菱形
B. 若 BD=CD,則四邊形 AEDF 是菱形
C. 若 AD 垂直平分 BC,則四邊形 AEDF 是矩形
D. 若 AD⊥BC,則四邊形 AEDF 是矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是一棵大樹,BF是一個斜坡,坡角為30°,某時刻太陽光直射斜坡BF,樹頂端A的影子落到斜坡上的點D處,已知BC=6m,BD=4m,求樹高AC的高度(結(jié)果精確到0.1m,參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com