【題目】如圖,在方格紙內(nèi)將經(jīng)過一次平移后得到,圖中標(biāo)出了點的對應(yīng)點.(小正方形邊長為1的頂點均為小正方形的頂點)

1)補全;

2)畫出邊上的中線

3)畫出邊上的高線;

4的面積為_____.

【答案】1)如圖見解析;(2)如圖見解析;(3)如圖見解析;(4的面積為8.

【解析】

1)利用點BB′的位置確定平移的方向與距離,然后利用此平移規(guī)律畫出AC的對應(yīng)點A′、C′即可;
2)利用網(wǎng)格特點確定BC的中點,從而得到BC邊的中線AD;
3)利用網(wǎng)格特點過ABC的垂線得到高AE;
4)根據(jù)三角形面積公式計算.

解:(1)如圖,△ABC′為所作;
2)如圖,AD為所作;
3AE為所作;
4)△ABC′的面積=×4×4=8,

故答案為8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請認(rèn)真觀察圖形,解答下列問題:

1)根據(jù)圖中條件,用兩種方法表示兩個陰影圖形的面積的和(只需表示,不必化簡);

2)由(1),你能得到怎樣的等量關(guān)系?請用等式表示;

3)如果圖中的abab)滿足a2+b2=53,ab=14,求:①a+b的值;②a4﹣b4的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1kx+2圖象與反比例函數(shù)y2圖象相交于A,B兩點,已知點B的坐標(biāo)為(3,﹣1)

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)請直接寫出不等式kx2的解集;

3)點Cx軸上一動點,當(dāng)SABC3時,求點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠BAC=60°,∠C=40°P,Q分別在BCCA上,APBQ分別是∠BAC,∠ABC的角平分線.求證:BQ+AQ=AB+BP

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD為∠CAF的角平分線,BD=CD,∠DBC=∠DCB,∠DCA=∠ABD,過DDE⊥ACE,DF⊥ABBA的延長線于F,則下列結(jié)論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結(jié)論有( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了豐富學(xué)生的課余生活,準(zhǔn)備從體育用品商店一次性購買若干個排球和籃球,若購買2個排球和1個籃球共需190元.購買3個排球和2個籃球共需330元.

1)購買一個排球、一個籃球各需多少元?

2)根據(jù)該校的實際情況,需從體育用品商店一次性購買排球和籃球共100個,要求購買排球和籃球的總費用不超過6500元,這所中學(xué)最多可以購買多少個籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ACB和△ECD中,∠ACB=ECD=a,且AC=BCEC=DC,AE、BD交于P點,連CP

1)求證:ACE≌△BCD

2)求∠APC的度數(shù)(用含a的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+ca0,c0)交x軸于點A,B,交y軸于點C,設(shè)過點A,B,C三點的圓與y軸的另一個交點為D

1)如圖1,已知點A,BC的坐標(biāo)分別為(﹣2,0),(80),(0,﹣4);

求此拋物線的表達式與點D的坐標(biāo);

若點M為拋物線上的一動點,且位于第四象限,求△BDM面積的最大值;

2)如圖2,若a=1,求證:無論b,c取何值,點D均為定點,求出該定點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在長方形ABCD中,AB=8cmBC=12cm,EAB的中點,動點P在線段BC上以4cm/s的速度由點BC運動,同時,動點Q在線段CD上由點C向點D運動,設(shè)運動時間為ts).

1)當(dāng)t=2時,求EBP的面積;

2)若動點Q以與動點P不同的速度運動,經(jīng)過多少秒,EBPCQP全等?此時點Q的速度是多少?

3)若動點Q以(2)中的速度從點C出發(fā),動點P以原來的速度從點B同時出發(fā),都逆時針沿長方形ABCD的四邊形運動,經(jīng)過多少秒,點P與點Q第一次在長方形ABCD的哪條邊上相遇?

查看答案和解析>>

同步練習(xí)冊答案