【題目】如圖,△ACB和△ECD中,∠ACB=∠ECD=a,且AC=BC,EC=DC,AE、BD交于P點,連CP
(1)求證:△ACE≌△BCD
(2)求∠APC的度數(shù)(用含a的式子表示)
【答案】(1)詳見解析;(2)90°-a.
【解析】
(1)根據(jù)SAS即可證明結(jié)論;
(2)過C點分別作CH⊥AE,CG⊥BD,先利用全等的性質(zhì)及三角形內(nèi)角和證明∠BPA=∠ACB=a,再通過面積相等證明CH=CG,從而得到PC平分∠APD,然后利用角之間的關(guān)系即可得到結(jié)果.
解:(1)證明:∵∠ACB=∠DCE=a,
∴∠ACB+∠BCE=∠DCE+∠BCE,
∴∠ACE=∠BCD,
在△ACE和△BCD中,,
∴△ACE≌△BCD(SAS);
(2)過C點分別作CH⊥AE于點H,CG⊥BD于點G,
∵△ACE≌△BCD,
∴∠DBC=∠EAC,BD=AE,,
又∵∠BHP=∠AHC,
∴∠BPA=∠ACB=a,
∵,AE=BD,
∴CH=CG,
又∵CH⊥AE,CG⊥BD,
∴PC平分∠APD,
∴∠APC=∠APD=(180°-∠BPA )=90°-a.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一”期間,小華和媽媽到某景區(qū)游玩,小明想利用所學(xué)的數(shù)學(xué)知識,估測景區(qū)里的觀景塔的高度,他從點處的觀景塔出來走到點處.沿著斜坡從點走了米到達(dá)點,此時回望觀景塔,更顯氣勢宏偉.在點觀察到觀景塔頂端的仰角為且,再往前走到處,觀察到觀景塔頂端的仰角,測得之間的水平距離米,則觀景塔的高度約為( ) 米. ()
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB垂直弦CD于點E,點F在AB的延長線上,且∠BCF=∠A.
(1)求證:直線CF是⊙O的切線;
(2)若⊙O的半徑為5,DB=4.求sin∠D的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在方格紙內(nèi)將經(jīng)過一次平移后得到,圖中標(biāo)出了點的對應(yīng)點.(小正方形邊長為1,的頂點均為小正方形的頂點)
(1)補全;
(2)畫出中邊上的中線;
(3)畫出中邊上的高線;
(4)的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對于給定的兩點,,若存在點,使得的面積等于1,即,則稱點為線段的“單位面積點”.
解答下列問題:
如圖,在平面直角坐標(biāo)系中,點的坐標(biāo)為.
(1)在點,,,中,線段的“單位面積點”是______.
(2)已知點,,點,是線段的兩個“單位面積點”,點在的延長線上,若,直接寫出點縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖③所示,圖象過點(﹣1,0),對稱軸為直線x=2,則下 列結(jié)論中正確的個數(shù)有( )
①4a+b=0;
②9a+3b+c<0;
③若點A(﹣3,y1),點B(﹣,y2),點C(5,y3)在該函數(shù)圖象上,則y1<y3<y2;
④若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2 , 且x1<x2 , 則x1<﹣1<5<x2 .
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小米手機越來越受到大眾的喜愛,各種款式相繼投放市場,某店經(jīng)營的A款手機去年銷售總額為50000元,今年每部銷售價比去年降低400元,若賣出的數(shù)量相同,銷售總額將比去年減少.
A,B兩款手機的進(jìn)貨和銷售價格如下表:
A款手機 | B款手機 | |
進(jìn)貨價格元 | 1100 | 1400 |
銷售價格元 | 今年的銷售價格 | 2000 |
(1)今年A款手機每部售價多少元?
(2)該店計劃新進(jìn)一批A款手機和B款手機共60部,且B款手機的進(jìn)貨數(shù)量不超過A款手機數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能使這批手機獲利最多?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com