【題目】為進(jìn)一步發(fā)展基礎(chǔ)教育,2016年某縣投入教育經(jīng)費(fèi)6000萬元,2018年投入教育經(jīng)費(fèi)8640萬元,假設(shè)該縣這兩年投入教育經(jīng)費(fèi)的年平均增長率相同.
(1)求這兩年該縣投入教育經(jīng)費(fèi)的年平均增長率;
(2)若該縣教育經(jīng)費(fèi)的投入還將保持相同的年平均增長率,請你預(yù)算2019年該縣投入教育經(jīng)費(fèi)多少萬元.
【答案】(1)20% (2) 10368萬元
【解析】
(1)設(shè)該縣投入教育經(jīng)費(fèi)的年平均增長率為x,根據(jù)2016年該縣投入教育經(jīng)費(fèi)6000萬元和2018年投入教育經(jīng)費(fèi)8640萬元列出方程,再求解即可;
(2)根據(jù)2016年該縣投入教育經(jīng)費(fèi)和每年的增長率,直接得出2017年該縣投入教育經(jīng)費(fèi)為8640×(1+x),再進(jìn)行計算即可.
(1)設(shè)該縣投入教育經(jīng)費(fèi)的年平均增長率為x,根據(jù)題意得:
解得:(不合題意,舍去),
答:該縣投入教育經(jīng)費(fèi)的年平均增長率為20%;
(2)因?yàn)?/span>2018年該縣投入教育經(jīng)費(fèi)為8640萬元,且增長率為20%,
所以2019年該縣投入教育經(jīng)費(fèi)為:y=8640×(1+0.2)=10368(萬元),
答:預(yù)算2019年該縣投入教育經(jīng)費(fèi)10368萬元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,小明在大樓30米高(即PH=30米)的窗口P處進(jìn)行觀測,測得山坡上A處的俯角為15°,山腳B處的俯角為60°,已知該山坡的坡度i(即tan∠ABC)為1:,點(diǎn)P、H、B、C、A在同一個平面上.點(diǎn)H、B、C在同一條直線上,且PH⊥HC.
(1)山坡坡角(即∠ABC)的度數(shù)等于 度;
(2)求山坡A、B兩點(diǎn)間的距離(結(jié)果精確到0.1米).
(參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,小紅家陽臺上放置了一個曬衣架.如圖2是曬衣架的側(cè)面示意圖,立桿AB,CD相交于點(diǎn)O,B,D兩點(diǎn)立于地面,經(jīng)測量:AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,現(xiàn)將曬衣架完全穩(wěn)固張開,扣鏈EF成一條直線,且EF=32cm.(參考數(shù)據(jù):sin61.9°≈0.882,cos61.9°≈0.471,tan28.1°≈0.534)
(1)求證:AC∥BD;
(2)求扣鏈EF與立桿AB的夾角∠OEF的度數(shù)(精確到0.1°);
(3)小紅的連衣裙穿在衣架后的總長度達(dá)到122cm,垂掛在曬衣架上是否會拖落到地面?請通過計算說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=60°,AB=12cm,BC=4cm,現(xiàn)有一動點(diǎn)P從點(diǎn)A出發(fā),以2cm/s的速度沿射線AB運(yùn)動,當(dāng)點(diǎn)P運(yùn)動______s時,△PBC為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一塊正方形ABCD木板上要貼三種不同的墻紙,正方形EFCG部分貼A型墻紙,△ABE部分貼B型墻紙,其余部分貼C型墻紙.A型、B型、C型三種墻紙的單價分別為每平方米60元、80元、40元.
探究1:如果木板邊長為1米,F(xiàn)C=米,則一塊木板用墻紙的費(fèi)用需 元;
探究2:如果木板邊長為2米,正方形EFCG的邊長為x米,一塊木板需用墻紙的費(fèi)用為y元,
(1)用含x的代數(shù)式表示y(寫過程).
(2)如果一塊木板需用墻紙的費(fèi)用為225元,求正方形EFCG的邊長為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=-x2+4x+5.
(1)用配方法將y=-x2+4x+5化成y=a(x﹣h)2+k的形式;
(2)指出拋物線的開口方向、對稱軸和頂點(diǎn)坐標(biāo);
(3)若拋物線上有兩點(diǎn)A(x1,y1),B(x2,y2),如果x1>x2>2,試比較y1與y2的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】施工隊(duì)要修建一個橫斷面為拋物線的公路隧道,其高度為6米,寬度OM為12米,現(xiàn)在O點(diǎn)為原點(diǎn),OM所在直線為x軸建立直角坐標(biāo)系(如圖所示).
(1)直接寫出點(diǎn)M及拋物線頂點(diǎn)P的坐標(biāo);
(2)求出這條拋物線的函數(shù)解析式;
(3)施工隊(duì)計劃在隧道門口搭建一個矩形“腳手架”ABCD,使A、D點(diǎn)在拋物線上,B、C點(diǎn)在地面OM上.為了籌備材料,需求出“腳手架”三根木桿AB、AD、DC的長度之和的最大值是多少?請你幫施工隊(duì)計算一下.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=x2+bx+c與x軸交于A(5,0)、B(-1,0)兩點(diǎn),過點(diǎn)A作直線AC⊥x軸,交直線y=2x于點(diǎn)C.
(1)求該拋物線的解析式;
(2)求點(diǎn)A關(guān)于直線y=2x的對稱點(diǎn)A′的坐標(biāo),判定點(diǎn)A′是否在拋物線上,并說明理由;
(3)點(diǎn)P是拋物線上一動點(diǎn),過點(diǎn)P作y軸的平行線,交線段CA′于點(diǎn)M,是否存在這樣的點(diǎn)P,使四邊形PACM是平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com