寫出一個過點(0,3),且函數(shù)值y隨自變量x的增大而減小的一次函數(shù)關(guān)系式:                 .(填上一個答案即可)
y=-x+3

思路分析:首先可以用待定系數(shù)法設(shè)此一次函數(shù)關(guān)系式是:y=kx+b(k≠0).根據(jù)已知條件確定k,b應(yīng)滿足的關(guān)系式,再根據(jù)條件進行分析即可.
解:設(shè)此一次函數(shù)關(guān)系式是:y=kx+b.
把x=0,y=3代入得:b=3,
又根據(jù)y隨x的增大而減小,知:k<0.
故此題只要給定k一個負數(shù),代入解出b值即可.如y=-x+3.(答案不唯一)
故答案是:y=-x+3.
點評:本題考查了一次函數(shù)的性質(zhì).掌握待定系數(shù)法,首先根據(jù)已知條件確定k,b應(yīng)滿足的關(guān)系式,再根據(jù)條件進行分析即可.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

函數(shù)常用的表示方法有三種.
已知A、B兩地相距30千米,小王以40千米/時的速度騎摩托車從A地出發(fā)勻速前往B地參加活動.請選擇兩種方法來表示小王與B地的距離y(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

甲、乙兩人同時從相距90千米的A地前往B地,甲乘汽車,乙騎摩托車,甲到達B地停留半小時后返回A地.如果是他們離A地的距離y(千米)與時間x(時)之間的函數(shù)關(guān)系圖象.

(1)求甲從B地返回A地的過程中,y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)若乙出發(fā)后2小時和甲相遇,求乙從A地到B地用了多長時間?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某蔬菜經(jīng)銷商到蔬菜種植基地采購一種蔬菜,經(jīng)銷商一次性采購蔬菜的采購單價y(元/千克)與采購量x(千克)之間的函數(shù)關(guān)系圖象如圖中折線AB——BC——CD所示(不包括端點A).

(1)當100<x<200時,直接寫y與x之間的函數(shù)關(guān)系式.
(2)蔬菜的種植成本為2元/千克,某經(jīng)銷商一次性采購蔬菜的采購量不超過200千克,當采購量是多少時,蔬菜種植基地獲利最大,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù)y2(k為常數(shù),且k≠0)的圖象都經(jīng)過點A(m,2).

(1)求點A的坐標及反比例函數(shù)的表達式;
(2)結(jié)合圖象直接比較:當x>0時,y1與y2的大。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在平面直角坐標系中,直線l經(jīng)過原點O,且與x軸正半軸的夾角為30°,點M在x軸上,⊙M半徑為2,⊙M與直線l相交于A,B兩點,若△ABM為等腰直角三角形,則點M的坐標為                

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

一農(nóng)民帶了若干千克自產(chǎn)的土豆進城出售,為了方便,他帶了一些零錢備用,按市場價售出一些后,又降價出售, 售出土豆千克數(shù)與他手中持有的錢(含備用零錢)的關(guān)系如圖所示,結(jié)合圖象回答下列問題:

(1) 農(nóng)民自帶的零錢是多少?
(2) 降價前他每千克土豆出售的價格是多少?
(3) 降價后他按每千克0.4元將剩余土豆售完,這時他手中的錢(含備用零錢) 是26元,問他一共帶了多少千克土豆.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么一次函數(shù)y=bx+c和反比例函數(shù)y=在同一平面直角坐標系中的圖象大致是( 。.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,梯形ABCD中,AD∥BC,BF⊥AD,CE⊥AD,且AF=EF=ED=5,BF=12,動點G從點A出發(fā),沿折現(xiàn)AB-BC-CD以每秒1個單位長的速度運動到點D停止. 設(shè)運動時間為t秒,△EFG的面積為y,則y關(guān)于t的函數(shù)圖像大致是(    )

查看答案和解析>>

同步練習冊答案