△ABC中,AB=AC,D為BC的中點,以D為頂點作∠MDN=∠B.
(1)如圖(1)當射線DN經(jīng)過點A時,DM交AC邊于點E,不添加輔助線,寫出圖中所有與△ADE相似的三角形.
(2)如圖(2),將∠MDN繞點D沿逆時針方向旋轉(zhuǎn),DM,DN分別交線段AC,AB于E,F(xiàn)點(點E與點A不重合),不添加輔助線,寫出圖中所有的相似三角形,并證明你的結(jié)論.
(3)在圖(2)中,若AB=AC=10,BC=12,當△DEF的面積等于△ABC的面積的時,求線段EF的長.
【答案】分析:(1)根據(jù)等腰三角形的性質(zhì)以及相似三角形的判定得出相似三角形即可;
(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性質(zhì)得出,進而得出△BDF∽△CED∽△DEF.
(3)首先利用△DEF的面積等于△ABC的面積的,求出DH的長,進而利用S△DEF的值求出EF即可.
解答:(1)圖(1)中與△ADE相似的有△ABD,△ACD,△DCE.
證明:∵AB=AC,D為BC的中點,
∴AD⊥BC,∠B=∠C,∠BAD=∠CAD,
又∵∠MDN=∠B,
∴△ADE∽△ABD,
同理可得:△ADE∽△ACD,
∵∠MDN=∠C=∠B,
∠B+∠BAD=90°,∠ADE+∠EDC=90°,
∠B=∠MDN,
∴∠BAD=∠EDC,
∵∠B=∠C,
∴△ABD∽△DCE,
∴△ADE∽△DCE,

(2)△BDF∽△CED∽△DEF,
證明:∵∠B+∠BDF+∠BFD=180°
∠EDF+∠BDF+∠CDE=180°,
又∵∠EDF=∠B,∴∠BFD=∠CDE,
由AB=AC,得∠B=∠C,
∴△BDF∽△CED,

∵BD=CD,

又∵∠C=∠EDF,
∴△BDF∽△CED∽△DEF.  

(3)連接AD,過D點作DG⊥EF,DH⊥BF,垂足分別為G,H.
∵AB=AC,D是BC的中點,
∴AD⊥BC,BD=BC=6.
在Rt△ABD中,AD2=AB2-BD2
∴AD=8
∴S△ABC=BC•AD=×12×8=48.
S△DEF=S△ABC=×48=12.
又∵AD•BD=AB•DH,
∴DH===
∵△BDF∽△DEF,
∴∠DFB=∠EFD   
∵DG⊥EF,DH⊥BF,
∴DH=DG=
∵S△DEF=×EF×DG=12,
∴EF==5.
點評:此題主要考查了相似三角形判定與性質(zhì)以及三角形面積計算,熟練應用相似三角形的性質(zhì)與判定得出對應用邊與對應角的關系是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,∠A=36°,
(1)用尺規(guī)作圖的方法,過B點作∠ABC的平分線交AC于D(不寫作法,保留作圖痕跡);
(2)求證:BC=BD=AD;
(3)求證:AD2=AC•DC;
(4)設
CDDA
=x,求x.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖,在△ABC中,AB=AC,點D,E在直線BC上運動.如果∠DAE=l05°,△ABD∽△ECA,則∠BAC=
30
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)△ABC中,AB=AC,D、E分別是AB、AC的中點,若AB=4,BC=6,則△ADE的周長是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、在△ABC中,AB=AC,BD是△ABC中線,已知△ABD和△BDC的周長之差為6,△ABC的周長是30,求這個等腰三角形的三邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在鈍角△ABC中,AB=AC,以BC為直徑作⊙O,⊙O與BA、CA的延長線分別交于D、E兩點精英家教網(wǎng),連接AO、BE、DC.
(1)求證:△ABO∽△CBD;
(2)若AB=2AD,且BC=2,求∠ACB的度數(shù).

查看答案和解析>>

同步練習冊答案