(2012•徐州)如圖,在正方形ABCD中,E是CD的中點(diǎn),點(diǎn)F在BC上,且FC=
1
4
BC.圖中相似三角形共有( 。
分析:首先由四邊形ABCD是正方形,得出∠D=∠C=90°,AD=DC=CB,又由DE=CE,F(xiàn)C=
1
4
BC,證出△ADE∽△ECF,然后根據(jù)相似三角形的對(duì)應(yīng)邊成比例與相似三角形的對(duì)應(yīng)角相等,證明出△AEF∽△ADE,則可得△AEF∽△ADE∽△ECF,進(jìn)而可得出結(jié)論.
解答:解:圖中相似三角形共有3對(duì).理由如下:
∵四邊形ABCD是正方形,
∴∠D=∠C=90°,AD=DC=CB,
∵DE=CE,F(xiàn)C=
1
4
BC,
∴DE:CF=AD:EC=2:1,
∴△ADE∽△ECF,
∴AE:EF=AD:EC,∠DAE=∠CEF,
∴AE:EF=AD:DE,
即AD:AE=DE:EF,
∵∠DAE+∠AED=90°,
∴∠CEF+∠AED=90°,
∴∠AEF=90°,
∴∠D=∠AEF,
∴△ADE∽△AEF,
∴△AEF∽△ADE∽△ECF,
即△ADE∽△ECF,△ADE∽△AEF,△AEF∽△ECF.
故選C.
點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì),以及正方形的性質(zhì).此題難度適中,解題的關(guān)鍵是證明△ECF∽△ADE,在此基礎(chǔ)上可證△AEF∽△ADE.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•徐州)如圖,菱形ABCD的邊長(zhǎng)為2cm,∠A=60°.
BD
是以點(diǎn)A為圓心、AB長(zhǎng)為半徑的弧,
CD
是以點(diǎn)B為圓心、BC長(zhǎng)為半徑的。畡t陰影部分的面積為
3
3
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•徐州)如圖是某地未來(lái)7日最高氣溫走勢(shì)圖,這組數(shù)據(jù)的極差為
7
7
℃.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•徐州)如圖,C為AB的中點(diǎn).四邊形ACDE為平行四邊形,BE與CD相交于點(diǎn)F.
求證:EF=BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•徐州)如圖,直線y=x+b(b>4)與x軸、y軸分別相交于點(diǎn)A、B,與反比例函數(shù)y=-
4
x
的圖象相交于點(diǎn)C、D(點(diǎn)C在點(diǎn)D的左側(cè)),⊙O是以CD長(zhǎng)為半徑的圓.CE∥x軸,DE∥y軸,CE、DE相交于點(diǎn)E.
(1)△CDE是
等腰直角
等腰直角
三角形;點(diǎn)C的坐標(biāo)為
-b-
b2-16
2
,
b-
b2-16
2
-b-
b2-16
2
,
b-
b2-16
2
,點(diǎn)D的坐標(biāo)為
-b+
b2-16
2
,
b+
b2-16
2
-b+
b2-16
2
b+
b2-16
2
(用含有b的代數(shù)式表示);
(2)b為何值時(shí),點(diǎn)E在⊙O上?
(3)隨著b取值逐漸增大,直線y=x+b與⊙O有哪些位置關(guān)系?求出相應(yīng)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案