【題目】(2016湖南省株洲市)某市對(duì)初二綜合素質(zhì)測(cè)評(píng)中的審美與藝術(shù)進(jìn)行考核,規(guī)定如下:考核綜合評(píng)價(jià)得分由測(cè)試成績(jī)(滿分100分)和平時(shí)成績(jī)(滿分100分)兩部分組成,其中測(cè)試成績(jī)占80%,平時(shí)成績(jī)占20%,并且當(dāng)綜合評(píng)價(jià)得分大于或等于80分時(shí),該生綜合評(píng)價(jià)為A等.
(1)孔明同學(xué)的測(cè)試成績(jī)和平時(shí)成績(jī)兩項(xiàng)得分之和為185分,而綜合評(píng)價(jià)得分為91分,則孔明同學(xué)測(cè)試成績(jī)和平時(shí)成績(jī)各得多少分?
(2)某同學(xué)測(cè)試成績(jī)?yōu)?/span>70分,他的綜合評(píng)價(jià)得分有可能達(dá)到A等嗎?為什么?
(3)如果一個(gè)同學(xué)綜合評(píng)價(jià)要達(dá)到A等,他的測(cè)試成績(jī)至少要多少分?
【答案】(1)孔明同學(xué)測(cè)試成績(jī)位90分,平時(shí)成績(jī)?yōu)?5分;(2)不可能;(3)他的測(cè)試成績(jī)應(yīng)該至少為75分.
【解析】
試題(1)分別利用孔明同學(xué)的測(cè)試成績(jī)和平時(shí)成績(jī)兩項(xiàng)得分之和為185分,而綜合評(píng)價(jià)得分為91分,分別得出等式求出答案;
(2)利用測(cè)試成績(jī)占80%,平時(shí)成績(jī)占20%,進(jìn)而得出答案;
(3)首先假設(shè)平時(shí)成績(jī)?yōu)闈M分,進(jìn)而得出不等式,求出測(cè)試成績(jī)的最小值.
試題解析:(1)設(shè)孔明同學(xué)測(cè)試成績(jī)?yōu)?/span>x分,平時(shí)成績(jī)?yōu)?/span>y分,依題意得:,解之得:.
答:孔明同學(xué)測(cè)試成績(jī)位90分,平時(shí)成績(jī)?yōu)?/span>95分;
(2)由題意可得:80﹣70×80%=24,24÷20%=120>100,故不可能.
(3)設(shè)平時(shí)成績(jī)?yōu)闈M分,即100分,綜合成績(jī)?yōu)?/span>100×20%=20,設(shè)測(cè)試成績(jī)?yōu)?/span>a分,根據(jù)題意可得:20+80%a≥80,解得:a≥75.
答:他的測(cè)試成績(jī)應(yīng)該至少為75分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某物流公司要同時(shí)運(yùn)輸A、B兩種型號(hào)的商品共13件,A型商品每件體積為2m3 , 每件質(zhì)量為1噸;B型商品每件體積為0.8m3 , 每件質(zhì)量為0.5噸,這兩種型號(hào)商品體積之和不超過(guò)18.8m3 , 質(zhì)量之和大于8.5噸.
(1)求A、B兩種型號(hào)商品的件數(shù)共有幾種可能?寫出所有可能情況;
(2)若一件A型商品運(yùn)費(fèi)為200元,一件B型商品運(yùn)費(fèi)為180元.則(1)中哪種情況的運(yùn)費(fèi)最少?最少運(yùn)費(fèi)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)計(jì)劃撥款9萬(wàn)元從廠家購(gòu)進(jìn)50臺(tái)電視機(jī),已知該廠家生產(chǎn)三種不同型號(hào)的電視機(jī),出廠價(jià)分別為:甲種每臺(tái)1500元,乙種每臺(tái)2100元,丙種每臺(tái)2500元,若商場(chǎng)同時(shí)購(gòu)進(jìn)其中兩種不同型號(hào)電視機(jī)共50臺(tái),用去9萬(wàn)元,請(qǐng)你研究一下商場(chǎng)的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在我縣中小學(xué)讀書活動(dòng)中,某校對(duì)部分學(xué)生做了一次主題為“我最喜愛(ài)的圖書”的調(diào)查活動(dòng),將圖書分為甲、乙、丙、丁四類,學(xué)生可根據(jù)自己的愛(ài)好任選其中一類,學(xué)校根據(jù)調(diào)查情況進(jìn)行了統(tǒng)計(jì),并繪制了不完整條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
請(qǐng)你結(jié)合圖中的信息,解答下列問(wèn)題(其中(1)、(2)直接填答案即可);
(1)本次調(diào)查了 名學(xué)生;
(2)被調(diào)查的學(xué)生中,最喜愛(ài)丁類圖書的有 人,最喜愛(ài)甲類圖書的人數(shù)被調(diào)查人數(shù)的 %.
(3)在最喜愛(ài)丙類圖書的學(xué)生中,女生人數(shù)是男生人數(shù)的1.5倍,若這所學(xué)校約有學(xué)生1800人,請(qǐng)你估計(jì)該校最喜愛(ài)丙類圖書的女生和男生分別有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),A點(diǎn)的坐標(biāo)為,C點(diǎn)的坐標(biāo)為,點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿著的路線移動(dòng)即:沿著長(zhǎng)方形移動(dòng)一周.
寫出點(diǎn)B的坐標(biāo)______
當(dāng)點(diǎn)P移動(dòng)了4秒時(shí),描出此時(shí)P點(diǎn)的位置,并求出點(diǎn)P的坐標(biāo).
在移動(dòng)過(guò)程中,當(dāng)點(diǎn)P到x軸距離為5個(gè)單位長(zhǎng)度時(shí),求點(diǎn)P移動(dòng)的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A(a,0),B(n,0)且a、n滿足|a+2|+=0,現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移4個(gè)單位,再向右平移3個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD,CD.
(1)求點(diǎn)C,D的坐標(biāo)及四邊形OBDC的面積;
(2)如圖2,若 點(diǎn)P是線段BD上的一個(gè)動(dòng)點(diǎn),連接PC,PO,當(dāng)點(diǎn)P在BD上移動(dòng)時(shí)(不與B,D重合)的值是否發(fā)生變化,并說(shuō)明理由.
(3)在四邊形OBDC內(nèi)是否存在一點(diǎn)P,連接PO,PB,PC,PD,使S△PCD=S△PBD; S△POB:S△POC=1?若存在這樣一點(diǎn),求出點(diǎn)P的坐標(biāo),若不存在,試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將Rt△ABC沿某條直線折疊,使斜邊的兩個(gè)端點(diǎn)A與B重合,折痕為DE.
(1)如果AC=6cm,BC=8cm,試求△ACD的周長(zhǎng);
(2)如果∠CAD:∠BAD=1:2,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣5,0)、B(﹣2,3)、C(﹣1,0)
(1)畫出△ABC關(guān)于坐標(biāo)原點(diǎn)O成中心對(duì)稱的△A1B1C1;
(2)將△ABC繞坐標(biāo)原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,畫出對(duì)應(yīng)的△A′B′C′,
(3)若以A′、B′、C′、D′為頂點(diǎn)的四邊形為平行四邊形,請(qǐng)直接寫出在第四象限中的D′坐標(biāo) .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com