如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點(diǎn)A(m,﹣2).

(1)求反比例函數(shù)的解析式;
(2)觀察圖象,直接寫出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍;
(3)若雙曲線上點(diǎn)C(2,n)沿OA方向平移個單位長度得到點(diǎn)B,判斷四邊形OABC的形狀并證明你的結(jié)論.
(1)
(2)﹣1<x<0或x>1。
(3)首先求出OA的長度,結(jié)合題意CB∥OA且CB=,判斷出四邊形OABC是平行四邊形,再證明OA=OC。

分析:(1)設(shè)反比例函數(shù)的解析式為(k>0),然后根據(jù)條件求出A點(diǎn)坐標(biāo),再求出k的值,進(jìn)而求出反比例函數(shù)的解析式。
(2)直接由圖象得出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍;
(3)首先求出OA的長度,結(jié)合題意CB∥OA且CB=,判斷出四邊形OABC是平行四邊形,再證明OA=OC
解:(1)設(shè)反比例函數(shù)的解析式為(k>0)
∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1!郃(﹣1,﹣2)。
又∵點(diǎn)A在上,∴,解得k=2。,
∴反比例函數(shù)的解析式為。
(2)觀察圖象可知正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍為﹣1<x<0或x>1。
(3)四邊形OABC是菱形。證明如下:
∵A(﹣1,﹣2),∴。
由題意知:CB∥OA且CB=,∴CB=OA。
∴四邊形OABC是平行四邊形。
∵C(2,n)在上,∴!郈(2,1)。
!郞C=OA。
∴平行四邊形OABC是菱形。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)中,是反比例函數(shù)的是( 。
A.y=5﹣xB.C.y="2013x"D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)的圖象在同一直角坐標(biāo)系下的大致圖象如圖所示,則k、b的取值范圍是
A.k>0,b>0B.k<0,b>0C.k<0,b<0D.k>0,b<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知反比例函數(shù),當(dāng)x<0時,y隨x的增大而減小,則k的范圍( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

某廠現(xiàn)有300噸煤,這些煤能燒的天數(shù)y與平均每天燒的噸數(shù)x之間的函數(shù)關(guān)系是( 。
A.(x>0)B.(x≥0)
C.y=300x(x≥0)D.y=300x(x>0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)(a≠0)與(a≠0)在同一坐標(biāo)系中的大致圖象是
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=x+b(b≠0)交坐標(biāo)軸于A、B兩點(diǎn),交雙曲線y=于點(diǎn)D,過D作兩坐標(biāo)軸的垂線DC、DE,連接OD.

(1)求證:AD平分∠CDE;
(2)對任意的實數(shù)b(b≠0),求證AD·BD為定值;
(3)是否存在直線AB,使得四邊形OBCD為平行四邊形?若存在,求出直線的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線經(jīng)過點(diǎn)(2,3),如果A(a1,b1),B(a2,b2)兩點(diǎn)在該雙曲線上,且a1<0<a2,那么b1     b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知四邊形ABCD是平行四邊形,BC=2AB,A,B兩點(diǎn)的坐標(biāo)分別是(-1,0),(0,2),C,D兩點(diǎn)在反比例函數(shù)的圖象上,則的值等于        

查看答案和解析>>

同步練習(xí)冊答案