【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線(xiàn)y=ax2+bx-5與x軸交于A(-1,0),B(5,0)兩點(diǎn),與y軸交與點(diǎn)C.
(1)求拋物線(xiàn)的函數(shù)表達(dá)式;
(2)若點(diǎn)D是y軸上的點(diǎn),且以B、C、D為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)D的坐標(biāo);
(3)如圖2,CE//x軸與拋物線(xiàn)相交于點(diǎn)E,點(diǎn)H是直線(xiàn)CE下方拋物線(xiàn)上的動(dòng)點(diǎn),過(guò)點(diǎn)H且與y軸平行的直線(xiàn)與BC、CE分別相交于點(diǎn)F,G,試探求當(dāng)點(diǎn)H運(yùn)動(dòng)到何處時(shí),四邊形CHEF的面積最大,求點(diǎn)H的坐標(biāo)及最大面積.
【答案】(1)y=x2-4x-5;(2)D點(diǎn)坐標(biāo)為(0,1)或(0,);(3)H(,);四邊形CHEF的最大面積為.
【解析】
(1)根據(jù)待定系數(shù)法直接確定出拋物線(xiàn)解析式;
(2)分兩種情況,利用相似三角形的比例式即可求出點(diǎn)D的坐標(biāo);
(3)先求出直線(xiàn)BC的解析式,進(jìn)而求出四邊形CHEF的面積的函數(shù)關(guān)系式,即可求出最大值;
解:(1)把A(-1,0),B(5,0)代入y=ax2+bx-5可得
,解得
二次函數(shù)的解析式為y=x2-4x-5.
(2) 如圖1,令x=0,則y=5,
∴C(0,5),
∴OC=OB,
∴∠OBC=∠OCB=45°,
∴AB=6,BC=5,
要使以B,C,D為頂點(diǎn)的三角形與△ABC相似,則有或,
當(dāng)時(shí),
CD=AB=6,
∴D(0,1),
當(dāng)時(shí),
∴,
∴CD=,
∴D(0, ),
即:D的坐標(biāo)為(0,1)或(0, );
(3)設(shè)H(t,t2-4t-5)
∥x軸, ,
又因?yàn)辄c(diǎn)E在拋物線(xiàn)上,即 ,解得(舍去)
∴BC所在直線(xiàn)解析式為y=x-5,
∴ 則,
而CE是定值,
∴當(dāng)HF的值最大時(shí),四邊形CHEF有最大面積。
當(dāng)時(shí),HF取得最大值,四邊形CHEF的最大面積為
,
此時(shí)H(,)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于的一元二次方程.
(1)求證:方程總有兩個(gè)實(shí)數(shù)根;
(2)若方程有一根小于1,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)經(jīng)營(yíng)某種品牌的童裝,購(gòu)進(jìn)時(shí)的單價(jià)是元.根據(jù)市場(chǎng)調(diào)查,在一段時(shí)間內(nèi),銷(xiāo)售單價(jià)是元時(shí),銷(xiāo)售量是件.而銷(xiāo)售單價(jià)每降低元,就可多售出件.
求出銷(xiāo)售該品牌童裝獲得的利潤(rùn)元與銷(xiāo)售單價(jià)元之間的函數(shù)關(guān)系式;
若童裝廠(chǎng)規(guī)定該品牌童裝銷(xiāo)售單價(jià)不低于元,且商場(chǎng)要完成不少于件的銷(xiāo)售
任務(wù),則商場(chǎng)銷(xiāo)售該品牌童裝獲得的最大利潤(rùn)是多少元?
如果要使利潤(rùn)不低于元,那么銷(xiāo)售單價(jià)應(yīng)在什么取值范圍內(nèi)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)(x﹣5)2=16
(2)x2=5x
(3)x2﹣4x+1=0
(4)x2+3x﹣4=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1的正方形組成的網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,其中點(diǎn)A(5,4),B(1,3),將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A1OB1.
(1)畫(huà)出△A1OB1;
(2)在旋轉(zhuǎn)過(guò)程中點(diǎn)B所經(jīng)過(guò)的路徑長(zhǎng)為______;
(3)求在旋轉(zhuǎn)過(guò)程中線(xiàn)段AB、BO掃過(guò)的圖形的面積之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用指定的方法解方程:
(1)x-2=x(x-2)(因式分解法)
(2)(用配方法)
(3)(用公式法)
(4)(用合適的方法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知關(guān)于x的一元二次方程x2+(2k+3)x+k2=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2.
(1)求k的取值范圍;
(2)若=﹣1,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,DE垂直平分AB,交線(xiàn)段BC于點(diǎn)E(點(diǎn)E與點(diǎn)C不重合),點(diǎn)F為AC上一點(diǎn),點(diǎn)G為AB上一點(diǎn)(點(diǎn)G與點(diǎn)A不重合),且.
(1)如圖1,當(dāng)時(shí),線(xiàn)段AG和CF的數(shù)量關(guān)系是 .
(2)如圖2,當(dāng)時(shí),猜想線(xiàn)段AG和CF的數(shù)量關(guān)系,并加以證明.
(3)若,,,請(qǐng)直接寫(xiě)出CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,正方形的邊,分別在正方形的邊,上.
填空:和的數(shù)量關(guān)系是 和的位置關(guān)系是 .
(2)把正方形繞點(diǎn)旋轉(zhuǎn)到如圖位置,(1)中的結(jié)論是否成立?若成立,寫(xiě)成證明過(guò)程,若不存在,請(qǐng)說(shuō)明理由.
(3)設(shè)正方形的邊長(zhǎng)為4,正方形的邊長(zhǎng)為,正方形繞點(diǎn)旋轉(zhuǎn)過(guò)程中,若、、三點(diǎn)共線(xiàn),求的長(zhǎng).(直接寫(xiě)出結(jié)果)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com