【題目】已知△ABC是等邊三角形,AD⊥BC于點(diǎn)D,點(diǎn)E是直線AD上的動(dòng)點(diǎn),將BE繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn)60°得到BF,連接EF、CF、AF.
(1)如圖1,當(dāng)點(diǎn)E在線段AD上時(shí),猜想∠AFC和∠FAC的數(shù)量關(guān)系;(直接寫出結(jié)果)
(2)如圖2,當(dāng)點(diǎn)E在線段AD的延長線上時(shí),(1)中的結(jié)論還成立嗎?若成立,請(qǐng)證明你的結(jié)論,若不成立,請(qǐng)寫出你的結(jié)論,并證明你的結(jié)論;
(3)點(diǎn)E在直線AD上運(yùn)動(dòng),當(dāng)△ACF是等腰直角三角形時(shí),請(qǐng)直接寫出∠EBC的度數(shù).
【答案】(1)∠AFC+∠FAC=90°,見解析;(2)仍成立,見解析;(3)15°
【解析】
(1)由旋轉(zhuǎn)的性質(zhì)可得BE=BF,∠EBF=60°,由“SAS”可證△ABE≌△CBF,可得∠BAE=∠BCF=30°,由直角三角形的性質(zhì)可得結(jié)論;
(2)由旋轉(zhuǎn)的性質(zhì)可得BE=BF,∠EBF=60°,由“SAS”可證△ABE≌△CBF,可得∠BAE=∠BCF=30°,由直角三角形的性質(zhì)可得結(jié)論;
(3)由全等三角形的性質(zhì)和等邊三角形的性質(zhì)可得AB=AE,由等腰三角形的性質(zhì)可求解.
解:(1)∠AFC+∠FAC=90°,
理由如下:連接AF,
∵△ABC是等邊三角形,
∴AB=AC=BC,∠ABC=∠BAC=∠ACB=60°,
∵AB=AC,AD⊥BC,
∴∠BAD=30°,
∵將BE繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn)60°得到BF,
∴BE=BF,∠EBF=60°,
∴∠EBF=∠ABC,
∴∠ABE=∠FBC,且AB=BC,BE=BF,
∴△ABE≌△CBF(SAS)
∴∠BAE=∠BCF=30°,
∴∠ACF=90°,
∴∠AFC+∠FAC=90°;
(2)結(jié)論仍然成立,
理由如下:∵△ABC是等邊三角形,
∴AB=AC=BC,∠ABC=∠BAC=∠ACB=60°,
∵AB=AC,AD⊥BC,
∴∠BAD=30°,
∵將BE繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn)60°得到BF,
∴BE=BF,∠EBF=60°,
∴∠EBF=∠ABC,
∴∠ABE=∠FBC,且AB=BC,BE=BF,
∴△ABE≌△CBF(SAS)
∴∠BAE=∠BCF=30°,
∴∠ACF=90°,
∴∠AFC+∠FAC=90°;
(3)∵△ACF是等腰直角三角形,
∴AC=CF,
∵△ABE≌△CBF,
∴CF=AE,
∴AC=AE=AB,
∴∠ABE==75°,
∴∠EBC=∠ABE﹣∠ABC=15°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某次數(shù)學(xué)競賽共有3道判斷題,認(rèn)為正確的寫“”,錯(cuò)誤的寫“”,小明在做判斷題時(shí),每道題都在“”或“”中隨機(jī)寫了一個(gè).
(1)小明做對(duì)第1題的概率是 ;
(2)求小明這3道題全做對(duì)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD中,∠ACB=30°,將△ACD繞C點(diǎn)順時(shí)針旋轉(zhuǎn)α(0°<α<360°)至△A'CD'位置.
(1)如圖2,若AB=2,α=30°,求S△BCD′.
(2)如圖3,取AA′中點(diǎn)O,連OB、OD′、BD′.若△OBD′存在,試判定△OBD′的形狀.
(3)當(dāng)α=α1時(shí),OB=OD′,則α1= °;當(dāng)α=α2時(shí),△OBD′不存在,則α2= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)新浪網(wǎng)調(diào)查,2019年全國網(wǎng)民最關(guān)注的熱點(diǎn)話題分別有:消費(fèi)、教育、環(huán)保、反腐及其它共五類,且關(guān)注五類熱點(diǎn)問題的網(wǎng)民的人數(shù)所占百分比如圖1所示,關(guān)注該五類熱點(diǎn)問題網(wǎng)民的人數(shù)的不完整條形統(tǒng)計(jì)如圖2,請(qǐng)根據(jù)圖中信息解答下列問題.
(1)求出圖1中關(guān)注“反腐”類問題的網(wǎng)民所占百分比x的值,并將圖2中的不完整的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)為了深度了解網(wǎng)民對(duì)政府工作報(bào)告的想法,新浪網(wǎng)邀請(qǐng)5名網(wǎng)民代表甲、乙、丙、丁、戊做客新浪訪談,且一次訪談只選2名代表.請(qǐng)你用列表法或畫樹狀圖的方法,求出一次所選代表恰好是丙和丁的概率.
(3)據(jù)統(tǒng)計(jì),2017年網(wǎng)民最關(guān)注教育問題的人數(shù)所占百分比約為10%,則從2017年到2019年的年平均增長率約為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小圓O的半徑為1,△A1B1C1,△A2B2C2,△A3B3C3,…,△AnBnn依次為同心圓O的內(nèi)接正三角形和外切正三角形,由弦A1C1和弧A1C1圍成的弓形面積記為S1,由弦A2C2和弧A2C2圍成的弓形面積記為S2,…,以此下去,由弦Ann和弧Ann圍成的弓形面積記為Sn,其中S2020的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來,移動(dòng)支付已成為主要支付方式之一.為了解某校800名學(xué)生上個(gè)月A,B兩種移動(dòng)支付方式的使用情況,從全校學(xué)生中隨機(jī)抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:
下面有四個(gè)推斷:
①從全校學(xué)生中隨機(jī)抽取1人,該學(xué)生上個(gè)月僅使用A支付的概率為0.3;
②從全校學(xué)生中隨機(jī)抽取1人,該學(xué)生上個(gè)月A,B兩種支付方式都使用的概率為0.45;
③估計(jì)全校僅使用B支付的學(xué)生人數(shù)為200人;
④這100名學(xué)生中,上個(gè)月僅使用A和僅使用B支付的學(xué)生支付金額的中位數(shù)為800元.
其中合理推斷的序號(hào)是( )
A.①②B.①③C.①④D.②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是直徑AB所對(duì)的半圓弧,點(diǎn)C在上,且∠CAB =30°,D為AB邊上的動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B不重合),連接CD,過點(diǎn)D作DE⊥CD交直線AC于點(diǎn)E.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)線段AE,AD長度之間的關(guān)系進(jìn)行了探究.
下面是小明的探究過程,請(qǐng)補(bǔ)充完整:
(1)對(duì)于點(diǎn)D在AB上的不同位置,畫圖、測量,得到線段AE,AD長度的幾組值,如下表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | 位置8 | 位置9 | ||
AE/cm | 0.00 | 0.41 | 0.77 | 1.00 | 1.15 | 1.00 | 0.00 | 1.00 | 4.04 | … |
AD/cm | 0.00 | 0.50 | 1.00 | 1.41 | 2.00 | 2.45 | td style="width:10%; border-top-style:solid; border-top-width:0.75pt; border-right-style:solid; border-right-width:0.75pt; border-left-style:solid; border-left-width:0.75pt; padding:3.38pt 5.03pt; vertical-align:middle">3.21 | 3.50 | … |
在AE,AD的長度這兩個(gè)量中,確定_______的長度是自變量,________的長度是這個(gè)自變量的函數(shù);
(2)在下面的平面直角坐標(biāo)系中,畫出(1)中所確定的函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)AE=AD時(shí),AD的長度約為________cm(結(jié)果精確到0.1).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,D,E,F(xiàn)分別是BC,AC,AB上的點(diǎn),DE⊥AC,EF⊥AB,
FD⊥BC,則△DEF的面積與△ABC的面積之比等于( )
A.1∶3 B.2∶3 C.∶2 D.∶3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某數(shù)學(xué)活動(dòng)小組為測量學(xué)校旗桿AB的高度,沿旗桿正前方米處的點(diǎn)C出發(fā),沿斜面坡度 的斜坡CD前進(jìn)4米到達(dá)點(diǎn)D,在點(diǎn)D處安置測角儀,測得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內(nèi),AB⊥BC,AB//DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈.計(jì)算結(jié)果保留根號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com