【題目】如圖,一次函數(shù)y=-x4的圖象與x軸和y軸分別交于點AB,再將AOB沿直線CD對折,使點A與點B重合、直線CDx軸交于點C,與AB交于點D

(1)點A的坐標(biāo)為_________,點B的坐標(biāo)為_________;

(2)在直線AB上是否存在點P使得△APO的面積為12?若存在,請求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由;

(3)OC的長度.

【答案】1)(8,0),(0,4);(2(2,3);(14,-3);3OC=3,

【解析】

1)令x=0y=0即可求出點AB的坐標(biāo);(2)設(shè)出點P的坐標(biāo),利用三角形的面積公式,分兩種情況解答即可;(3)設(shè)出點C坐標(biāo),表示出BC,最后利用勾股定理即可求出OC.

解:(1)令x=0,則y=4,
B04),
y=0,則0=-x+4,
x=8
A8,0),
故答案為:(8,0),(0,4);

2)設(shè)Pm,n),
A8,0),O0,0),∴AO=8
=×AO×=12,12=4,

n=±3,

當(dāng)n=3時,3=-m4, m=2, (2,3);

當(dāng)n=-3時,-3=-m4, m=2, (14,-3);

∴存在符合條件的點為:(2,3);(14,-3);

3)設(shè)OC=a,
AC=8-a,
由折疊知,BC=AC=8-a,
RtBOC中,OB=4,
根據(jù)勾股定理得,BC2-OC2=OB2,
∴(8-a2-a2=16,
a=3
即:OC=3,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有下列說法:

①同一個人在相同的條件下做同一個實驗,第一天做了次,第二天做了次,對這一實驗中的同一事件來說,這兩天出現(xiàn)的頻率相等;

②投擲骰子,偶數(shù)朝上的概率是;

③如果一個袋里裝有個紅球,個白球,從中任取個,因為取出的球不是紅球,就是白球,所以取出紅球的概率是

其中正確的有( )

A. 0個 B. 1個 C. 2個 D. 3個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的直徑,、的切線,、為切點,于點的延長線交于點,連接.給出以下結(jié)論:①;;③點的內(nèi)心.其中正確的是________(填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某批發(fā)門市銷售兩種商品,甲種商品每件售價為300元,乙種商品每件售價為80元.新年來臨之際,該門市為促銷制定了兩種優(yōu)惠方案:

方案一:買一件甲種商品就贈送一件乙種商品;

方案二:按購買金額打八折付款.

某公司為獎勵員工,購買了甲種商品20件,乙種商品x(x≥20)件.

(1)分別寫出優(yōu)惠方案一購買費用y1(元)、優(yōu)惠方案二購買費用y2元)與所買乙種商品x(件)之間的函數(shù)關(guān)系式;

(2)若該公司共需要甲種商品20件,乙種商品40件.設(shè)按照方案一的優(yōu)惠辦法購買了m件甲種商品,其余按方案二的優(yōu)惠辦法購買.請你寫出總費用wm之間的關(guān)系式;利用wm之間的關(guān)系式說明怎樣購買最實惠.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解九(1)班學(xué)生的體溫情況,對這個班所有學(xué)生測量了一次體溫(單位:℃),小明將測量結(jié)果繪制成如下統(tǒng)計表和如圖所示的扇形統(tǒng)計圖.下列說法錯誤的是(

體溫(℃)

36.1

36.2

36.3

36.4

36.5

36.6

人數(shù)(人)

4

8

8

10

x

2

A.這些體溫的眾數(shù)是8

B.這些體溫的中位數(shù)是36.35

C.這個班有40名學(xué)生

D.x=8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一巡查機器人接到指令,從原點O出發(fā),沿OA1A2A3A4A5A6A7A8的路線移動,每次移動1個單位長度,依次得到點A10,1),A211),A310),A42,0),A52,﹣1),A63,﹣1),A730),A84,0),若機器人巡查到某一位置的橫坐標(biāo)為23時,即停止,則其縱坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在半圓O中,AB為直徑,P為弧AB的中點,分別在弧AP和弧PB上取中點A1和B1,再在弧PA1和弧PB1上分別取中點A2和B2,若一直這樣取中點,求∠AnPBn=__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】這是某單位的平面示意圖,已知大門的坐標(biāo)為(-3,0),花壇的坐標(biāo)為(0-1).

1)根據(jù)上述條件建立平面直角坐標(biāo)系;

2)建筑物A的坐標(biāo)為(31),請在圖中標(biāo)出A點的位置.

3)建筑物B在大門北偏東45°的方向,并且B在花壇的正北方向處,請直接寫出B點的坐標(biāo).

4)在y軸上找一點C,使ABC是以AB腰的等腰三角形,請直接寫出點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【問題提出】

如圖①,已知ABC是等腰三角形,點E在線段AB上,點D在直線BC上,且ED=EC,將BCE繞點C順時針旋轉(zhuǎn)60°ACF連接EF

試證明:AB=DB+AF

【類比探究】

(1)如圖②,如果點E在線段AB的延長線上,其他條件不變,線段AB,DB,AF之間又有怎樣的數(shù)量關(guān)系?請說明理由

(2)如果點E在線段BA的延長線上,其他條件不變,請在圖③的基礎(chǔ)上將圖形補充完整,并寫出AB,DB,AF之間的數(shù)量關(guān)系,不必說明理由.

查看答案和解析>>

同步練習(xí)冊答案