【題目】已知:如圖,在菱形ABCD中,對角線AC、BD相交于點O,DE∥AC,AE∥BD.
(1)求證:四邊形AODE是矩形;
(2)若AB=,∠BCD=120°,連接CE,求CE的長.
【答案】(1)證明見解析;(2)
【解析】
(1)首先根據(jù)菱形的性質(zhì),可得AC⊥BD,然后判斷出四邊形AODE是平行四邊形,即可推得四邊形AODE是矩形.
(2)在Rt△AEC中,求出AC、AE即可解決問題.
(1)證明:∵四邊形ABCD是菱形,
∴AC⊥BD,
∴∠AOD=90°,
又∵DE∥AC,AE∥BD,
∴四邊形AODE是平行四邊形,
∴四邊形AODE是矩形.
(2)∵∠BCD=120°,四邊形ABCD是菱形,
∴∠BAD=∠BCD=120°,∠CAB=∠CAD=60°,AB=BC,
∴△ABC是等邊三角形,
∴AC=AB=2,OB=OD=AE=3,
在Rt△AEC中,EC===.
科目:初中數(shù)學 來源: 題型:
【題目】如圖 AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點O.
(1)求證AD=AE;
(2)連接OA,BC,試判斷直線OA,BC的關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖1,當點D在線段BC上,如果∠BAC=90°,則∠BCE=_____度;如圖2,當點D在線段BC上,如果∠BAC=60°,則∠BCE=______度.
(2)設(shè)∠BAC=α,∠BCE=β,如圖3,當點D在線段BC上移動,則α,β之間有怎樣的數(shù)量關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2-2ax+c與x軸交于A,B兩點,與y軸正半軸交于點C,且A(-1,0).
(1)一元二次方程ax2-2ax+c=0的解是 ;
(2)一元二次不等式ax2-2ax+c>0的解集是 ;
(3)若拋物線的頂點在直線y=2x上,求此拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】目前我國建立了比較完善的經(jīng)濟困難學生資助體系.某校去年上半年發(fā)放給每個經(jīng)濟困難學生389元,今年上半年發(fā)放了438元,設(shè)每半年發(fā)放的資助金額的平均增長率為,則下面列出的方程中正確的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AC=6,BD=6,E是BC邊的中點,P,M分別是AC,AB上的動點,連接PE,PM,則PE+PM的最小值是( 。
A. 6 B. 3 C. 2 D. 4.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】溫州市處于東南沿海,夏季經(jīng)常遭受臺風襲擊,一次,溫州氣象局測得臺風中心在溫州市的正西方向300千米的處,以每小時千米的速度向東偏南的方向移動,距臺風中心200千米的范圍是受臺風嚴重影響的區(qū)域,試問:
(1)臺風中心在移動過程中離溫州市最近距離是多少千米?
(2)溫州市是否受臺風影響?若不會受到,請說明理由;若會受到,求出溫州市受臺風嚴重影響的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是一個長為4a、寬為b的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成的一個“回形”正方形(如圖2).
(1)圖2中的陰影部分的面積為 ;
(2)觀察圖2請你寫出(a+b)2、(a﹣b)2、ab之間的等量關(guān)系是 ;
(3)根據(jù)(2)中的結(jié)論,若x+y=7,xy=,則x﹣y= ;
(4)實際上通過計算圖形的面積可以探求相應(yīng)的等式.根據(jù)圖3,寫出一個因式分解的等式 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com