【題目】如圖1,在RtABC中,∠B90°,ABBC12cm,點(diǎn)D從點(diǎn)A出發(fā)沿邊AB2cm/s的速度向點(diǎn)B移動(dòng),移動(dòng)過程中始終保持DEBCDFAC(點(diǎn)E、F分別在AC、BC上).設(shè)點(diǎn)D移動(dòng)的時(shí)間為t秒.

1)試判斷四邊形DFCE的形狀,并說明理由;

2)當(dāng)t為何值時(shí),四邊形DFCE的面積等于20cm2?

3)如圖2,以點(diǎn)F為圓心,FC的長為半徑作⊙F,在運(yùn)動(dòng)過程中,當(dāng)⊙F與四邊形DFCE只有1個(gè)公共點(diǎn)時(shí),請直接寫出t的取值范圍.

【答案】(1)平行四邊形,理由見解析;(21秒或5秒;(3126t6

【解析】

1)由兩組對邊平行的四邊形是平行四邊形可證四邊形DFCE是平行四邊形;

2)設(shè)點(diǎn)Dt秒后四邊形DFCE的面積為20cm2,利用BD×CF=四邊形DFCE的面積,列方程解答即可;

3)如圖2中,當(dāng)點(diǎn)DF上時(shí),F與四邊形DECF有兩個(gè)公共點(diǎn),求出此時(shí)t的值,根據(jù)圖象即可解決問題.

解:(1DEBC,DFAC

四邊形DFCE是平行四邊形;

2)如圖1中,設(shè)點(diǎn)D出發(fā)t秒后四邊形DFCE的面積為20cm2,根據(jù)題意得,

DEAD2t,BD122tCFDE2t,

BD×CF=四邊形DFCE的面積,

∴2t122t)=20

t26t+50,

t1)(t5)=0,

解得t11,t25;

答:點(diǎn)D出發(fā)1秒或5秒后四邊形DFCE的面積為20cm2;

3)如圖2中,當(dāng)點(diǎn)DF上時(shí),F與四邊形DECF有兩個(gè)公共點(diǎn),

Rt△DFB中,∵∠B90°ADDFCF2t,BDBF122t,

∴2t122t),

t126,

由圖象可知,當(dāng)126t6時(shí),F與四邊形DFCE1個(gè)公共點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將正方形ABCD折疊,使頂點(diǎn)ACD邊上的一點(diǎn)H重合(H不與端點(diǎn)C,D重合),折痕交AD于點(diǎn)AB E,交BC于點(diǎn)F,邊AB折疊后與邊BC交于點(diǎn)G,設(shè)正方形ABCD的周長為m,的周長為n,則的值為(

A.B.C.D.H點(diǎn)位置的變化而變化

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠B60°,AB2,M為邊AB的中點(diǎn),N為邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),將△BMN沿直線MN折疊,使點(diǎn)B落在點(diǎn)E處,連接DE、CE,當(dāng)△CDE為等腰三角形時(shí),BN的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=kx+b 的圖象與反比例函數(shù)y=的圖交象于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是-2 求:

(1)一次函數(shù)的解析式;

(2)△AOB的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩位同學(xué)參加數(shù)學(xué)綜合素質(zhì)測試,各項(xiàng)成績?nèi)缦卤恚海▎挝唬悍郑?/span>

數(shù)與代數(shù)

空間與圖形

統(tǒng)計(jì)與概率

綜合與實(shí)踐

學(xué)生甲

93

93

89

90

學(xué)生乙

94

92

94

86

1)分別計(jì)算甲、乙同學(xué)成績的中位數(shù);

2)如果數(shù)與代數(shù),空間與圖形,統(tǒng)計(jì)與概率,綜合與實(shí)踐的成績按4312計(jì)算,那么甲、乙同學(xué)的數(shù)學(xué)綜合素質(zhì)成績分別為多少分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,CBG=A,CD為直徑,OCAB相交于點(diǎn)E,過點(diǎn)EEFBC,垂足為F,延長CDGB的延長線于點(diǎn)P,連接BD.

(1)求證:PG與⊙O相切;

(2)若=,求的值;

(3)在(2)的條件下,若⊙O的半徑為8,PD=OD,求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線y=2x+b與雙曲線交于A,B兩點(diǎn).P是線段AB上一點(diǎn)(不與點(diǎn)A,點(diǎn)B重合),過點(diǎn)P作平行于x軸的直線交雙曲線于點(diǎn)M,過點(diǎn)P作平行于y軸的直線交雙曲線于點(diǎn)N

1)當(dāng)點(diǎn)A的橫坐標(biāo)為1時(shí),求b的值:

2)在(1)的條件下,設(shè)P點(diǎn)的橫坐標(biāo)為m,

①若m=-1,判斷PMPN的數(shù)量關(guān)系,并說明理由;

②若PMPN,結(jié)合函數(shù)圖象,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yax2+4x+ca0)的圖象與x軸交A,B兩點(diǎn),與y軸交于點(diǎn)C,直線y=﹣2x6經(jīng)過點(diǎn)AC

1)求該二次函數(shù)的解析式;

2)點(diǎn)P為第三象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),△APC的面積為S,試求S的最大值;

3)若P為拋物線的頂點(diǎn),且直角三角形APQ的直角頂點(diǎn)Qy軸上,請直接寫出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)、點(diǎn)在半徑為上,上一動(dòng)點(diǎn),軸上一定點(diǎn),當(dāng)點(diǎn)點(diǎn)逆時(shí)針運(yùn)動(dòng)到點(diǎn)時(shí),點(diǎn)的運(yùn)動(dòng)路徑長是(  )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案