【題目】如圖1,在平面直角坐標(biāo)系中,拋物線交x軸于A(﹣1,0)和B(5,0)兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)D是線段OB上一動點(diǎn),連接CD,將線段CD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到線段DE,過點(diǎn)E作直線l⊥x軸于H,過點(diǎn)C作CF⊥l于F.
(1)求拋物線解析式;
(2)如圖2,當(dāng)點(diǎn)F恰好在拋物線上時(shí),求線段OD的長;
(3)在(2)的條件下:
①連接DF,求tan∠FDE的值;
②試探究在直線l上,是否存在點(diǎn)G,使∠EDG=45°?若存在,請直接寫出點(diǎn)G的坐標(biāo);若不存在,請說明理由.
【答案】(1);(2)1;(3)①;②G(4,)或(4,6).
【解析】
試題分析:(1)把A、B的坐標(biāo)代入拋物線的解析式,解方程組即可;
(2)由C的縱坐標(biāo)求得F的坐標(biāo),由△OCD≌△HDE,得出DH=OC=3,即可求得OD的長;
(3)①先確定C、D、E、F四點(diǎn)共圓,由圓周角定理求得∠ECF=∠EDF,由tan∠ECF==,得到tan∠FDE=;
②連接CE,得出△CDE是等腰直角三角形,∠CED=45°,過D點(diǎn)作DG1∥CE,交直線l于G1,過D點(diǎn)作DG2⊥CE,交直線l于G2,則∠EDG1=45°,∠EDG2=45°,求得直線CE的解析式為,設(shè)直線DG1的解析式為,設(shè)直線DG2的解析式為,把D的坐標(biāo)代入即可求得m、n,從而求得解析式,進(jìn)而求得G的坐標(biāo).
試題解析:(1)如圖1,∵拋物線交x軸于A(﹣1,0)和B(5,0)兩點(diǎn),∴,解得:,∴拋物線解析式為;
(2)如圖2,∵點(diǎn)F恰好在拋物線上,C(0,3),∴F的縱坐標(biāo)為3,把y=3代入得,,解得x=0或x=4,∴F(4,3),∴OH=4,∵∠CDE=90°,∴∠ODC+∠EDH=90°,∴∠OCD=∠EDH,在△OCD和△HDE中,∵∠OCD=∠EDH,∠COD=∠DHE=90°,CD=DE,∴△OCD≌△HDE(AAS),∴DH=OC=3,∴OD=4﹣3=1;
(3)①如圖3,連接CE,∵△OCD≌△HDE,∴HE=OD=1,∵BF=OC=3,∴EF=3﹣1=2,∵∠CDE=∠CFE=90°,∴C、D、E、F四點(diǎn)共圓,∴∠ECF=∠EDF,在RT△CEF中,∵CF=OH=4,∴tan∠ECF==,∴tan∠FDE=;
②如圖4,連接CE,∵CD=DE,∠CDE=90°,∴∠CED=45°,過D點(diǎn)作DG1∥CE,交直線l于G1,過D點(diǎn)作DG2⊥CE,交直線l于G2,則∠EDG1=45°,∠EDG2=45°,∵EH=1,OH=4,∴E(4,1),∵C(0,3),∴直線CE的解析式為,設(shè)直線DG1的解析式為,∵D(1,0),∴,解得m=,∴直線DG1的解析式為,當(dāng)x=4時(shí),=,∴G1(4,);
設(shè)直線DG2的解析式為,∵D(1,0),∴0=2×1+n,解得n=﹣2,∴直線DG2的解析式為,當(dāng)x=4時(shí),y=2×4﹣2=6,∴G2(4,6);
綜上,在直線l上,是否存在點(diǎn)G,使∠EDG=45°,點(diǎn)G的坐標(biāo)為(4,)或(4,6).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠現(xiàn)在平均每天比原計(jì)劃多生產(chǎn)50臺機(jī)器,現(xiàn)在生產(chǎn)600臺機(jī)器所需要的時(shí)間與原計(jì)劃生產(chǎn)450臺機(jī)器所需要的時(shí)間相同.
(1)原計(jì)劃平均每天生產(chǎn)多少臺機(jī)器?
(2)若該工廠要在不超過5天的時(shí)間,生產(chǎn)1100臺機(jī)器,則平均每天至少還要再多生產(chǎn)多少臺機(jī)器?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC是等邊三角形,點(diǎn)D、E分別在邊AB、BC上,CD、AE交于點(diǎn)F,∠AFD=60°.
(1)如圖1,求證:BD=CE;
(2)如圖2,F(xiàn)G為△AFC的角平分線,點(diǎn)H在FG的延長線上,HG=CD,連接HA、HC,求證:∠AHC=60°;
(3)在(2)的條件下,若AD=2BD,F(xiàn)H=9,求AF長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,直線與x軸、y軸的交點(diǎn)分別為A、B,將∠OBA對折,使點(diǎn)O的對應(yīng)點(diǎn)H落在直線AB上,折痕交x軸于點(diǎn)C.
(1)直接寫出點(diǎn)C的坐標(biāo),并求過A、B、C三點(diǎn)的拋物線的解析式;
(2)若拋物線的頂點(diǎn)為D,在直線BC上是否存在點(diǎn)P,使得四邊形ODAP為平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由;
(3)設(shè)拋物線的對稱軸與直線BC的交點(diǎn)為T,Q為線段BT上一點(diǎn),直接寫出|QA﹣QO|的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線經(jīng)過A(0,2),B(3,2)兩點(diǎn),若兩動點(diǎn)D、E同時(shí)從原點(diǎn)O分別沿著x軸、y軸正方向運(yùn)動,點(diǎn)E的速度是每秒1個(gè)單位長度,點(diǎn)D的速度是每秒2個(gè)單位長度.
(1)求拋物線與x軸的交點(diǎn)坐標(biāo);
(2)若點(diǎn)C為拋物線與x軸的交點(diǎn),是否存在點(diǎn)D,使A、B、C、D四點(diǎn)圍成的四邊形是平行四邊形?若存在,求點(diǎn)D的坐標(biāo);若不存在,說明理由;
(3)問幾秒鐘時(shí),B、D、E在同一條直線上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù):2,1,x,7,3,5,3,2的眾數(shù)是2,則這組數(shù)據(jù)的中位數(shù)是( )
A. 2 B. 2.5 C. 3 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線l1;y=ax2+bx+c(a<0)經(jīng)過原點(diǎn),與x軸的另一個(gè)交點(diǎn)為B(4,0),點(diǎn)A為頂點(diǎn),且直線OA的解析式為y=x.
(1)如圖1,求拋物線l1的解析式;
(2)如圖2,將拋物線l1繞原點(diǎn)O旋轉(zhuǎn)180°,得到拋物線l2,l2與x軸交于點(diǎn)B′,頂點(diǎn)為A′,點(diǎn)P為拋物線l1上一動點(diǎn),連接PO交l2于點(diǎn)Q,連接PA、PA′、QA′、QA.
請求:平行四邊形PAQA′的面積S與P點(diǎn)橫坐標(biāo)x(2<x≤4)之間的關(guān)系式;
(3)在(2)的條件下,如圖11﹣3,連接BA′,拋物線l1或l2上是否存在一點(diǎn)H,使得HB=HA′?若存在,請求出點(diǎn)H的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AC的垂直平分線分別交AB、AC于點(diǎn)D、E.
(1)若∠A=40°,求∠DCB的度數(shù).
(2)若AE=4,△DCB的周長為13,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列添括號錯(cuò)誤的是( )
A. 3-4x=-(4x-3)
B. (a+b)-2a-b=(a+b)-(2a+b)
C. -x2+5x-4=-(x2-5x+4)
D. -a2+4a+a3-5=-(a2-4a)-(a3+5)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com