【題目】圖1、圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個(gè)小正方形的邊長(zhǎng)均為1,線段AC的兩個(gè)端點(diǎn)均在小正方形的頂點(diǎn)上.

(1)如圖1,點(diǎn)P在小正方形的頂點(diǎn)上,在圖1中作出點(diǎn)P關(guān)于直線AC的對(duì)稱點(diǎn)Q,連接AQ、QC、CP、PA,并直接寫出四邊形AQCP的周長(zhǎng);

(2)在圖2中畫出一個(gè)以線段AC為對(duì)角線、面積為6的矩形ABCD,且點(diǎn)B和點(diǎn)D均在小正方形的頂點(diǎn)上.

【答案】(1)作圖見(jiàn)解析;;(2)作圖見(jiàn)解析.

【解析】

試題分析:(1)通過(guò)數(shù)格子可得到點(diǎn)P關(guān)于AC的對(duì)稱點(diǎn),再直接利用勾股定理可得到周長(zhǎng);(2)利用網(wǎng)格結(jié)合矩形的性質(zhì)以及勾股定理可畫出矩形.

試題解析:(1)如圖1所示:四邊形AQCP即為所求,它的周長(zhǎng)為:;(2)如圖2所示:四邊形ABCD即為所求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校女子排球隊(duì)隊(duì)員的年齡分布如下表:

年齡

13

14

15

人數(shù)

4

7

4

則該校女子排球隊(duì)隊(duì)員的平均年齡是歲.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一個(gè)直角三角形紙片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分別是AC、AB邊上點(diǎn),連接EF.

(1)圖①,若將紙片ACB的一角沿EF折疊,折疊后點(diǎn)A落在AB邊上的點(diǎn)D處,且使S四邊形ECBF=3S△EDF,求AE的長(zhǎng);

(2)如圖②,若將紙片ACB的一角沿EF折疊,折疊后點(diǎn)A落在BC邊上的點(diǎn)M處,且使MF∥CA.

①試判斷四邊形AEMF的形狀,并證明你的結(jié)論;

②求EF的長(zhǎng);

(3)如圖③,若FE的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)N,CN=1,CE=,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC是等腰三角形,AB=AC.

(1)特殊情形:如圖1,當(dāng)DE∥BC時(shí),有DB EC.(填“>”,“<”或“=”)

(2)發(fā)現(xiàn)探究:若將圖1中的△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α<180°)到圖2位置,則(1)中的結(jié)論還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由.

(3)拓展運(yùn)用:如圖3,P是等腰直角三角形ABC內(nèi)一點(diǎn),∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市按以下規(guī)定收取每月的煤氣費(fèi):用氣不超過(guò)60立方米,按每立方米0.8元收費(fèi);如果超過(guò)60立方米,超過(guò)部分每立方米按1.2元收費(fèi).已知某戶用煤氣x立方米(x>60),則該戶應(yīng)交煤氣費(fèi)_____元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,等腰Rt△OAB中,∠AOB=90o等腰Rt△EOF中,∠EOF=90o,連結(jié)AE、BF.則AEBF是什么關(guān)系?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BEAC,垂足為點(diǎn)F,連接DF,分析下列四個(gè)結(jié)論:①△AEF∽△CAB;CF=2AF;DF=DC;tanCAD=.其中正確的結(jié)論有( )

A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】單項(xiàng)式2a2b的系數(shù)和次數(shù)分別是(
A.2,2
B.2,3
C.3,2
D.4,2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】愛(ài)好思考的小茜在探究?jī)蓷l直線的位置關(guān)系查閱資料時(shí),發(fā)現(xiàn)了“中垂三角形”,即兩條中線互相垂直的三角形稱為“中垂三角形”.如圖(1)、圖(2)、圖(3)中,AM、BN是△ABC的中線,AN⊥BN于點(diǎn)P,像△ABC這樣的三角形均為“中垂三角形”.設(shè)BC=a,AC=b,AB=c.

【特例探究】

(1)如圖1,當(dāng)tan∠PAB=1,c=4時(shí),a= ,b= ;

如圖2,當(dāng)∠PAB=30°,c=2時(shí),a= ,b= ;

【歸納證明】

(2)請(qǐng)你觀察(1)中的計(jì)算結(jié)果,猜想a2、b2、c2三者之間的關(guān)系,用等式表示出來(lái),并利用圖3證明你的結(jié)論.

【拓展證明】

(3)如圖4,ABCD中,E、F分別是AD、BC的三等分點(diǎn),且AD=3AE,BC=3BF,連接AF、BE、CE,且BE⊥CE于E,AF與BE相交點(diǎn)G,AD=3,AB=3,求AF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案