【題目】某小區(qū)為了促進生活垃圾的分類處理,將生活垃圾分為:可回垃圾、廚余垃圾、其他垃圾三類,分別記為A,B,C:并且設置了相應的垃圾箱,依次記為a,b,c.
(1)若將三類垃圾隨機投入三個垃圾箱,請你用樹形圖的方法求垃圾投放正確的概率:
(2)為了調查小區(qū)垃圾分類投放情況,現隨機抽取了該小區(qū)三類垃圾箱中總重500kg生活垃圾,數據如下(單位:)
a | b | c | |
A | 40 | 15 | 10 |
B | 60 | 250 | 40 |
C | 15 | 15 | 55 |
試估計“廚余垃圾”投放正確的概率.
科目:初中數學 來源: 題型:
【題目】探究:如圖,分別以△ABC的兩邊AB和AC為邊向外作正方形ABMN和正方形ACDE,CN、BE交于點P. 求證:∠ANC = ∠ABE.
應用:Q是線段BC的中點,連結PQ. 若BC = 6,則PQ = ___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC是一張等腰直角三角形紙板,∠C=Rt∠,AC=BC=2,在這張紙板中剪出一個盡可能大的正方形稱為第1次剪取,記所得正方形面積為s1(如圖1);在余下的Rt△ADE和Rt△BDF中,分別剪取正方形,得到兩個相同的正方形,稱為第2次剪取,并記這兩個正方形面積和為s2(如圖2);繼續(xù)操作下去…;則第10次剪取時,s10= ;第2012次剪取后,余下的所有小三角形的面積之和是
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(12分)如圖是某種窗戶的形狀,其上部是半圓形,下部是邊長相同的四個小正方形,已知下部的小正方形的邊長為am,計算:
(1)窗戶的面積;
(2)窗框的總長;
(3)若a=1,窗戶上安裝的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不計,求制作這種窗戶需要的費用是多少元(π取3.14,結果保留整數).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△BCF中,點D是邊CF上的一點,過點D作AD∥BC,過點B作BA∥CD交AD于點A,點G是BC的中點,點E是線段AD上一點,且∠CDG=∠ABE=∠EBF.
(1)若∠F=60°,∠C=45°,BC=2,請求出AB的長;
(2)求證:CD=BF+DF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們知道,對于一個圖形,通過兩種不同的方法計算它的面積,可以得到一個數學等式.例如圖可以得到.請解答下列問題:
(1)寫出圖中所表示的數學等式;
(2)利用(1)中所得到的結論,解決下面的問題:已知,,求的值;
(3)小明同學打算用張邊長為的正方形,張邊長為的正方形,張相鄰兩邊長為分別為、的長方形紙片拼出了一個面積為 長方形,那么他總共需要多少張紙片?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對連續(xù)的偶數2,4,6,8,…排成如圖的形式.若將圖中的十字框上下左右移動,框住的五個數之和能等于2020嗎?若能,請寫出這五個數中位置在最中間的數;若不能,請說明理由.你的答案是:____________________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,菱形中,對角線相交于點,,動點從點出發(fā),沿線段以的速度向點運動,同時動點從點出發(fā),沿線段以的速度向點運動,當其中一個動點停止運動時另一個動點也隨之停止.設運動時間為,以點為圓心,為半徑的⊙與射線,線段分別交于點,連接.
(1)求的長(用含有的代數式表示),并求出的取值范圍;
(2)當為何值時,線段與⊙相切?
(3)若⊙與線段只有一個公共點,求的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】現有正方形ABCD和一個以O為直角頂點的三角板,移動三角板,使三角板的兩直角邊所在直線分別與直線BC,CD交于點M,N.
(1)如圖1,若點O與點A重合,則OM與ON的數量關系是__________________;
(2)如圖2,若點O在正方形的中心(即兩對角線的交點),則(1)中的結論是否仍然成立?請說明理由;
(3)如圖3,若點O在正方形的內部(含邊界),當OM=ON時,請?zhí)骄奎cO在移動過程中可形成什么圖形?
(4)如圖4是點O在正方形外部的一種情況.當OM=ON時,請你就“點O的位置在各種情況下(含外部)移動所形成的圖形”提出一個正確的結論.(不必說理)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com