已知△ABC中,AC=BC,∠CAB=α(定值),圓O的圓心O在AB上,并分別與AC、BC相切于點P、Q.
(1)求∠POQ的大。ㄓ忙帘硎荆
(2)設(shè)D是CA延長線上的一個動點,DE與圓O相切于點M,點E在CB的延長線上,試判斷∠DOE的大小是否保持不變,并說明理由;
(3)在(2)的條件下,如果AB=m(m為已知數(shù)),cosα=
3
5
,設(shè)AD=x,DE=y,求y關(guān)于x的函數(shù)解析式(要指出函數(shù)的定義域)
(1)∵AC=BC,
∴∠OAP=∠OBQ=α
∵圓O分別和AC、BC相切于點P、Q,
∴∠OPA=∠OQB=90°,(1分)
∴∠AOP=∠BOQ=90°-α(1分)
∴∠POQ=180°-2(90°-a)=2α(1分)

(2)∠DOE的大小保持不變,(1分)
說明理由如下:
連接OM,由切線長定理,EM=EQ
又∵OM=OQ,OE=OE,
∴△OEM≌△OEQ,
∴∠MOE=∠QOE(1分)
同理,∠MOD=∠POD(1分)
∴∠DOE=
1
2
(∠POM+∠QOM)=
1
2
(360°-∠POQ)=180°-a,
∵a為定值,
∴∠DOE的大小保持不變.

(3)由OP=OQ,并根據(jù)等腰三角形的性質(zhì),得O是AB的中點,
即OA=OB=
1
2
AB=
m
2
,
AP=BQ=AO•cosa=
3
10
m,DM=DP=
3
10
m
+x(1分)
在△ADO和△BOE中,∠DAO=∠OBE=180°-α
∵∠ADO+∠AOD=∠OAP=α,
又∵∠BOE+∠AOD=180°-∠DOE=α,
∴∠ADO=∠BOE,于是△ADO△BOE(1分)
BE
AO
=
AD
BO
,BE=
AO•BO
AD
=
m2
4x
(1分)
∴ME=QE=QB+BE=
3
10
m+
m2
4x
(1分)
∴DE=DM+ME=
3
10
m+x+
3
10
m+
m2
4x
=x+
m2
4x
+
3
5
m

因此所求的函數(shù)解析為y=x+
m2
4x
+
3
5
m(x>0)
.(1分)
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知點C是以AB為直徑的⊙O上一點,CH⊥AB于點H,過點B作⊙O的切線交直線AC于點D,點E為CH的中點,連接AE并延長交BD于點F,直線CF交AB的延長線于G.
(1)求證:AE•FD=AF•EC;
(2)求證:FC=FB;
(3)若FB=FE=2,求⊙O的半徑r的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知⊙O是以坐標原點O為圓心,1為半徑的圓,∠AOB=45°,點P在x軸上運動,若過點P且與OA平行的直線與⊙O有公共點,設(shè)P(x,0),則x的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,△ABC內(nèi)接于⊙O,EC切⊙O于點C,若∠BOC=76°,則∠BCE的度數(shù)是( 。
A.14°B.38°C.52°D.76°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角梯形ABCD中,ABDC,∠B=90°,P為BC上一點.
(1)若∠APD=90°,找出圖中兩個相似的三角形,并加以證明;
(2)若AB=9,DC=4,P為BC的中點,∠APD=90°,求BC的長;
(3)在(2)的條件下,試探求以AD為直徑的圓與BC所在直線的位置關(guān)系,并予以證明.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,BD是⊙O的弦,延長BD到點C,使DC=BD,連結(jié)AC,過點D作DE⊥AC,垂足為E.
(1)求證:DE為⊙O的切線;
(2)若∠BAC=60°,CE=3,則⊙O的半徑是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知直線PA交⊙O于A、B兩點,AE是⊙O的直徑,點C為⊙O上一點,且AC平分∠PAE,過C作CD⊥PA,垂足為D.
(1)求證:CD為⊙O的切線;
(2)若DC=4,AC=5,求⊙O的直徑的AE.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,PA、PB切⊙O于A、B兩點,C在
AB
AB上,過C點的切線交PA于E,交PB于F,若∠APB=50°.則∠EOF=( 。
A.45°B.50°C.65°D.75°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,PA切半圓O于A點,如果∠P=35°,那么∠AOP=______度.

查看答案和解析>>

同步練習冊答案