【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交AC與E,交BC與D.
求證:
(1)D是BC的中點(diǎn);
(2)△BEC∽△ADC;
(3)若 ,求⊙O的半徑。
【答案】
(1)解:∵AB是⊙O的直徑,∴∠ADB=90°
即AD是底邊BC上的高.
又∵AB=AC,∴△ABC是等腰三角形, ∴D是BC的中點(diǎn)
(2)解:∵∠CBE與∠CAD是同弧所對(duì)的圓周角,∴ ∠CBE=∠CAD.
又∵ ∠BCE=∠ACD,∴△BEC∽△ADC;
(3)解:由△BEC∽△ADC得: ,
即CD·BC=AC·CE.
∵D是BC的中點(diǎn),∴CD= BC.
又 ∵AB=AC,∴CD·BC=AC·CE= BC·BC=AB·CE
即BC =2AB·CE=12
∴AB=6
∴⊙O的半徑為3
【解析】(1)由AB是⊙O的直徑,得到AD是底邊BC上的高,根據(jù)等腰三角形的三線合一得到D是BC的中點(diǎn);(2)根據(jù)圓周角定理可知∠CBE與∠CAD是同弧所對(duì)的圓周角,得到∠CBE=∠CAD,根據(jù)兩角對(duì)應(yīng)相等兩三角形相似,得到△BEC∽△ADC;(3)由△BEC∽△ADC,得到比例,再由D是BC的中點(diǎn),根據(jù)切線長(zhǎng)定理求出AB的長(zhǎng),得到⊙O的半徑的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的頂點(diǎn)D的坐標(biāo)為(1,﹣4),與y軸交于點(diǎn)C(0,﹣3),與x軸交于A、B兩點(diǎn).
(1)求該拋物線的函數(shù)關(guān)系式;
(2)在拋物線上存在點(diǎn)P(不與點(diǎn)D重合),使得S△PAB=S△ABD , 請(qǐng)求出P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)甲,乙兩種商品,若購買6件甲商品和3件乙商品共用108元;若購買5件甲商品和2件乙商品共用88元.
(1)求甲,乙兩種商品每件的價(jià)格;
(2)已知該商店購買乙商品的件數(shù)比購買甲商品的件數(shù)多8件,如果需要購買甲,乙兩種商品的總件數(shù)不少于32件,且商店購買的甲、乙兩種商品的總費(fèi)用不超過292元,那么該商店有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F是對(duì)角線AC上的兩點(diǎn),且AE=CF.
(1)寫出圖中所有的全等三角形;
(2)求證:BE=DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù) ( 是常數(shù)).
(1)求證:不論 為何值,該函數(shù)的圖象與x軸沒有公共點(diǎn);
(2)把該函數(shù)的圖象沿 軸向下平移多少個(gè)單位長(zhǎng)度后,得到的函數(shù)的圖象與 軸只有一個(gè)公共點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)B、C、D在同一條直線上,△ABC和△CDE都是等邊三角形.BE交AC于F,AD交CE于H,
①求證:△BCE≌△ACD;
②求證:CF=CH;
③判斷△CFH的形狀并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD∥AB,點(diǎn)O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°.
(1)求∠DOE的度數(shù);
(2)OF平分∠AOD嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列解題過程
已知a、b、c為△ABC為三邊,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀
解:∵a2c2-b2c2=a4-b4①
∴c2(a2-b2)=(a2-b2)(a2+b2)②
∴c2=a2+b2③
∴△ABC是直角三角形
回答下列問題:
(1)上述解題過程,從哪一步開始出現(xiàn)錯(cuò)誤?請(qǐng)寫出該步的序號(hào)________.
(2)錯(cuò)誤原因?yàn)?/span>________.
(3)本題正確結(jié)論是什么,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為使高一新生入校后及時(shí)穿上合身的校服,現(xiàn)提前對(duì)某校九年級(jí)三班學(xué)生即將所穿校服型號(hào)情況進(jìn)行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖兩個(gè)不完整的統(tǒng)計(jì)圖(校服型號(hào)以身高作為標(biāo)準(zhǔn),共分為6個(gè)型號(hào)):
根據(jù)以上信息,解答下列問題:
(1)該班共有 名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該班學(xué)生所穿校服型號(hào)的眾數(shù)為 ,中位數(shù)為 ;
(4)如果該校預(yù)計(jì)招收新生1500名,根據(jù)樣本數(shù)據(jù),估計(jì)新生穿170型校服的學(xué)生大約有多少名?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com