如圖,已知⊙0的直徑CD為10,弦AB的長為8,且AB⊥CD,垂足為M;連接AD,則AD的長為   
【答案】分析:連接OA.利用垂徑定理可以求得Rt△AOM的直角邊AM=4;然后利用勾股定理知OM=3;最后在Rt△ADM中由勾股定理即可求得AD的長度.
解答:解:連接OA.
∵CD是⊙O的直徑,AB⊥CD,
∴AM=BM;
又∵CD=10,AB=8,
∴OA=5,AM=4,
∴在Rt△AOM中,OM=3(勾股定理);
∴在Rt△ADM中,AD===4;
故答案是:4
點評:本題考查了勾股定理、垂徑定理.解題時,注意利用隱含在題干中的已知條件“直徑的長度等于=2×半徑的長度”.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

2、如圖,已知⊙O的直徑AB⊥弦CD于點E,下列結(jié)論中一定正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知半圓的直徑AB=4cm,點C、D是這個半圓的三等分點,則弦AC、AD和
CD
圍成的陰影部分面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、如圖,已知⊙O的直徑為10,P為⊙O內(nèi)一點,且OP=4,則過點P且長度小于6的弦共有
0
條.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知⊙O的直徑AB與弦AC的夾角∠CAB=27°,過點C作⊙O的切線交AB延長線于點D,則∠ADC的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2010•邢臺二模)如圖,已知⊙O的直徑AB與弦AC的夾角為31°,過C點的切線PC與AB的延長線交于點P,則∠P等于(  )

查看答案和解析>>

同步練習冊答案