【題目】如圖,在Rt△ABC中,∠C=90°,AB=10,BC=6.點(diǎn)P從點(diǎn)A出發(fā),沿折線AB—BC向終點(diǎn)C運(yùn)動,在AB上以每秒5個(gè)單位長度的速度運(yùn)動,在BC上以每秒3個(gè)單位長度的速度運(yùn)動.點(diǎn)Q從點(diǎn)C出發(fā),沿CA方向以每秒2個(gè)單位長度的速度運(yùn)動.點(diǎn)P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P停止時(shí),點(diǎn)Q也隨之停止.設(shè)點(diǎn)P運(yùn)動的時(shí)間為t秒.
(1)求線段AC的長.
(2)求線段BP的長.(用含t的代數(shù)式表示)
(3)設(shè)△APQ的面積為S,求S與t之間的函數(shù)關(guān)系式.
(4)連結(jié)PQ,當(dāng)PQ與△ABC的一邊平行或垂直時(shí),直接寫出t的值.
【答案】(1);(2)當(dāng)0≤t≤2時(shí),BP=10-5t;當(dāng)2<t≤4時(shí),BP=3·(t-2)=3t-6;(3);(4)t=0或t=4或或或.
【解析】
(1)利用勾股定理可求AC;
(2)由題意可知,當(dāng)0≤t≤2時(shí),點(diǎn)P在AB上,當(dāng)2<t≤4時(shí),點(diǎn)P在BC上(不包含B),分情況求解即可;
(3)分情況討論:①當(dāng)0≤t≤2時(shí),②當(dāng)2<t≤4時(shí),分別用t表示出AQ和△APQ中邊AQ上的高,利用三角形面積公式求解即可;
(4)分四種情況討論:①當(dāng)PQ⊥BC時(shí),②當(dāng)PQ⊥AB時(shí),③當(dāng)PQ⊥AC時(shí),④當(dāng)PQ∥AB時(shí),根據(jù)題意,分別利用同角的三角函數(shù)相等和相似三角形的判定和性質(zhì)求解即可.
解:(1)∵∠C=90°,AB=10,BC=6,
∴;
(2)由題意可知,當(dāng)0≤t≤2時(shí),點(diǎn)P在AB上,當(dāng)2<t≤4時(shí),點(diǎn)P在BC上(不包含B),
∴當(dāng)0≤t≤2時(shí),BP=10-5t,
當(dāng)2<t≤4時(shí),BP=3·(t-2)=3t-6;
(3)分兩種情況討論:
①當(dāng)0≤t≤2時(shí),過點(diǎn)P作PE⊥AC于點(diǎn)E,
由題意得:AP=5t,CQ=3t,則AQ=8-3t,
∵sin∠PAE=,
∴PE=3t,
∴;
②當(dāng)2<t≤4時(shí),
∵BP=3t-6,
∴CP=12-3t,
∴,
綜上所述:;
(4)分四種情況討論:
①由題意可得,當(dāng)PQ⊥BC時(shí),t=0或t=4;
②當(dāng)PQ⊥AB時(shí),如圖,
∵AP=5t,AQ=8-3t,
∴,
∴,
解得:;
③當(dāng)PQ⊥AC時(shí),如圖,
∵AP=5t,AQ=8-3t,
∴,
∴,
解得:;
④當(dāng)PQ∥AB時(shí),易得△CPQ∽△CBA,如圖,
∵CP=12-3t,CQ=3t,
∴,即,
解得:,
綜上所述,當(dāng)t=0或t=4或或或時(shí),PQ與△ABC的一邊平行或垂直.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:r如圖,在梯形ABCD中,AD∥BC,∠BCD=90°.對角線AC、BD相交于點(diǎn)E。且AC⊥BD。(1)求證:CD=BC·AD;(2)點(diǎn)F是邊BC上一點(diǎn),連接AF,與BD相交于點(diǎn)G,如果∠BAF=∠DBF,求證:。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰中,,AD是的角平分線,且,以點(diǎn)A為圓心,AD長為半徑畫弧EF,交AB于點(diǎn)E,交AC于點(diǎn)F.
(1)求由弧EF及線段FC、CB、BE圍成圖形(圖中陰影部分)的面積;
(2)將陰影部分剪掉,余下扇形AEF,將扇形AEF圍成一個(gè)圓錐的側(cè)面,AE與AF正好重合,圓錐側(cè)面無重疊,求這個(gè)圓錐的高h.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖①,在中,,是過的一條直線,且,在的異側(cè),于,于.
(1)填空:線段與、之間的數(shù)量關(guān)系為________;
(2)若直線繞點(diǎn)旋轉(zhuǎn)到如圖②位置時(shí)(),其他條件不變,判斷與,之間的數(shù)量關(guān)系,并說明理由.
(3)若直線繞點(diǎn)旋轉(zhuǎn)到如圖③位置時(shí)(),其他條件不變,則與,的關(guān)系又怎樣?請寫出結(jié)果,不必證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,,點(diǎn)D、E分別在邊上,連接DE,且.
(1)問題發(fā)現(xiàn):若,則______________________.
(2)拓展探究:若,將饒點(diǎn)C按逆時(shí)針旋轉(zhuǎn)度,圖2是旋轉(zhuǎn)過程中的某一位置,在此過程中的大小有無變化?如果不變,請求出的值,如果變化,請說明理由;
(3)問題解決:若,將旋轉(zhuǎn)到如圖3所示的位置時(shí),則的值為______________.(用含的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖像與直線交于點(diǎn)、點(diǎn).
(1)求的表達(dá)式和的值;
(2)當(dāng)時(shí),求自變量的取值范圍;
(3)將直線沿軸上下平移,當(dāng)平移后的直線與拋物線只有一個(gè)公共點(diǎn)時(shí),求平移后的直線表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為4的正方形紙片ABCD折疊,使得點(diǎn)A落在邊CD的中點(diǎn)E處,折痕為FG,點(diǎn)F、G分別在邊AD、BC上,則折痕FG的長度為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O,請用無刻度的直尺完成下列作圖.
(1)如圖①,四邊形ABCD是⊙O的內(nèi)接四邊形,且AB=AD,畫出∠BCD的角平分線;
(2)如圖②,AB和AD是⊙O的切線,切點(diǎn)分別是B、D,點(diǎn)C在⊙O上,畫出∠BCD的角平分線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com