【題目】中,,,以邊的中點(diǎn)為圓心,作半圓與相切,點(diǎn)分別是邊和半圓上的動(dòng)點(diǎn),連接,則長的最大值與最小值的和是__________

【答案】9

【解析】

如圖,設(shè)OAC相切于點(diǎn)E,連接OE,作OP1BC垂足為P1OQ1,此時(shí)垂線段OP1最短,P1Q1最小為OP1-OQ1,當(dāng)Q2AB邊上時(shí),P2B重合時(shí),P2Q2最大,即可得出答案

如圖所示

設(shè)OAC相切于點(diǎn)E,連接OE,作OP1BC垂足為P1 OQ1

此時(shí)垂線段OP1最短,最小值為OP1-OQ1

,

,

,

,

,

,

AO=BO,

,

同理可求OE=3,

,

PQ最小值P1Q1=O P1-OQ1=1,

如圖,當(dāng)在AB邊上時(shí),與B重合時(shí),P2Q2經(jīng)過圓心,

∵經(jīng)過圓心的弦最長,

PQ最小值P2Q2=O B-OQ2=3+5=8,

PQ長的最大值與最小值的和是1+8=9.

故答案為:9.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形網(wǎng)格中建立如圖的平面直角坐標(biāo)系xOy,ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)是(44),請(qǐng)解答下列問題:

1)將ABC向下平移5單位長度,畫出平移后的并寫出點(diǎn)A對(duì)應(yīng)點(diǎn)的坐標(biāo);

2)畫出關(guān)于y軸對(duì)稱的 并寫出的坐標(biāo);

3=______.(直接寫答案)

4)在x軸上求作一點(diǎn)P,使PA+PB最。ú粚懽鞣ǎA糇鲌D痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,過點(diǎn)CCE∥BD,過點(diǎn)DDE∥ACCEDE相交于點(diǎn)E

1)求證:四邊形CODE是矩形.

2)若AB=5,AC=6,求四邊形CODE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)0),3,4).

1)求拋物線的表達(dá)式及對(duì)稱軸;

2)設(shè)點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,點(diǎn)是拋物線對(duì)稱軸上一動(dòng)點(diǎn),記拋物線在之間的部分為圖象(包含,兩點(diǎn)).若直線與圖象有公共點(diǎn),結(jié)合函數(shù)圖像,求點(diǎn)縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為5⊙A中,弦BC,ED所對(duì)的圓心角分別是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,則弦BC的弦心距等于( 。

A. 3 B. C. D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,菱形OABC的邊長為2,點(diǎn)A在第一象限,點(diǎn)C在x軸正半軸上,AOC=60°,若將菱形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)75°,得到四邊形OA′B′C′,則點(diǎn)B的對(duì)應(yīng)點(diǎn)B′的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在RtABC中,∠C90°ACBC,點(diǎn)D,E分別在邊AC,BC上,CDCE,連接AE,點(diǎn)F,H,G分別為DE,AE,AB的中點(diǎn)連接FH,HG

1)觀察猜想圖1中,線段FHGH的數(shù)量關(guān)系是   ,位置關(guān)系是   

2)探究證明:把CDE繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)到圖2的位置,連接AD,AEBE判斷FHG的形狀,并說明理由

3)拓展延伸:把CDE繞點(diǎn)C在平面內(nèi)自由旋轉(zhuǎn),若CD4,AC8,請(qǐng)直接寫出FHG面積的最大值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知頂點(diǎn)為(﹣3,﹣6)的拋物線y=ax2+bx+c經(jīng)過點(diǎn)(﹣1,﹣4),則下列結(jié)論中錯(cuò)誤的是(  )

A. b2>4ac

B. ax2+bx+c≥﹣6

C. 若點(diǎn)(﹣2,m),(﹣5,n)在拋物線上,則m>n

D. 關(guān)于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5和﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,ABC中,∠C=90°.

(1)AC=4,BC=3,AE=,DEAC.且DE=DB,AD的長

(2)請(qǐng)你用沒有刻度的直尺和圓規(guī),在線段AB上找一點(diǎn)F,使得點(diǎn)F到邊AC的距離等于FB(注:不寫作法,保留作圖痕跡,對(duì)圖中涉及到的點(diǎn)的用字母進(jìn)行標(biāo)注)

查看答案和解析>>

同步練習(xí)冊(cè)答案