已知:如圖,點E、F是半徑為5cm的⊙O上兩定點,點P是直徑AB上的一動點,AB⊥OF,∠AOE=30°,則點P在AB上移動的過程中,PE+PF的最小值是
5
3
5
3
 cm.
分析:作點F關(guān)于直徑AB的對稱點F′,連接EF′與AB交于點P,此時PE+PF的值最。
解答:解:作點F關(guān)于直徑AB的對稱點F′,連接EF′與AB交于點P,并過點O作OD⊥EF′,垂足為D,如下圖所示:

∵AB⊥OF,∠AOE=30°,OE=OF′=5cm,
∴∠EOF′=120°,∠DOE=60°,
∴PE+PF=EF′=2ED=2×
5
2
×
3
=5
3
cm.
故答案為:5
3
點評:此題主要考查了軸對稱最短路徑問題,找到F的對稱點,確定點P的位置是關(guān)鍵步驟.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、已知:如圖,點O為?ABCD的對角線BD的中點,直線EF經(jīng)過點O,分別交BA、DC的延長線于點E、F,求證:AE=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,點A、B分別在x軸、y軸上,以O(shè)A為直徑的⊙P交AB于點C(-
2
5
,
4
5
)
,E為直徑精英家教網(wǎng)OA上一動點(與點O、A不重合).EF⊥AB于點F,交y軸于點G.設(shè)點E的橫坐標(biāo)為x,△BGF的面積為y.
(1)求直線AB的解析式;
(2)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,點A、B、C、D在同一條直線上,EA⊥AD,F(xiàn)D⊥AD,AE=DF,AB=DC.BF,CE相交于點O.
(1)求證:∠ACE=∠DBF;
(2)若點B是AC的中點,∠E=60°,AE=4,求△OBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,點P是半徑為5cm的⊙O外的一點,OP=13cm,PT切⊙O于T,過P點作⊙O的割線PAB,(PB>PA).設(shè)PA=x,PB=y,求y關(guān)于x的函數(shù)解析式,并確定自變量x的取值范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•淮陰區(qū)模擬)已知:如圖,點E、A、C在同一條直線上,AB=CE,AC=CD,BC=ED.求證:AB∥CD.

查看答案和解析>>

同步練習(xí)冊答案