【題目】對(duì)于問題:證明不等式a2+b2≥2ab,甲、乙兩名同學(xué)的作業(yè)如下: 甲:根據(jù)一個(gè)數(shù)的平方是非負(fù)數(shù)可知(a﹣b)2≥0,
∴a2﹣2ab+b2≥0,
∴a2+b2≥2ab.
乙:如圖1,兩個(gè)正方形的邊長(zhǎng)分別為a、b(b≤a),如圖2,先將邊長(zhǎng)為a的正方形沿虛線部分分別剪成Ⅰ、Ⅱ、Ⅲ三部分,若再將Ⅰ、Ⅱ和邊長(zhǎng)為b的正方形拼接成如圖3所示的圖形,可知此時(shí)圖3的面積為2ab,其面積小于或等于原來兩個(gè)正方形的面積和,故不等式a2+b2≥2ab成立.
則對(duì)于兩人的作業(yè),下列說法正確的是(

A.甲、乙都對(duì)
B.甲對(duì),乙不對(duì)
C.甲不對(duì),乙對(duì)
D.甲、乙都不對(duì)

【答案】A
【解析】解:甲的證明利用了完全平方公式和不等式的性質(zhì),證明是正確的; 乙的證明:圖2:a2=S+S+S ,
圖3的面積=2ab=S+S+b2 ,
因?yàn)镾≥0,
所以S+S+S+b2≥S+S+b2
所以a2+b2≥2ab.
故乙的證明也是正確的.
故選A.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用不等式的性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握1:不等式的兩邊同時(shí)加上(或減去)同一個(gè)數(shù)(或式子),不等號(hào)的方向不變 .2:不等式的兩邊同時(shí)乘以(或除以)同一個(gè) 正數(shù) ,不等號(hào)的方向 不變 .3:不等式的兩邊同時(shí)乘以(或除以)同一個(gè) 負(fù)數(shù) ,的方向 改變.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中點(diǎn),ED的延長(zhǎng)線與CB的延長(zhǎng)線交于點(diǎn)F.
(1)求證:FD2=FBFC;
(2)若G是BC的中點(diǎn),連接GD,GD與EF垂直嗎?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠CAB=30°,∠C=90°.AD= AC,AB=8,E是AB上任意一點(diǎn),F(xiàn)是AC上任意一點(diǎn),則折線DEFB的最短長(zhǎng)度為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點(diǎn)E,連接EO并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)D,點(diǎn)F為BC的中點(diǎn),連接EF.
(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為3,∠EAC=60°,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A(m,m+1),B(m+3,m﹣1)都在反比例函數(shù) 的圖象上.

(1)求m,k的值;
(2)求直線AB的函數(shù)表達(dá)式;
(3)如果M為x軸上一點(diǎn),N為y軸上一點(diǎn),以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是平行四邊形,直接寫出點(diǎn)M,N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=6,則AE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),連接AE、BD.

(1)猜想PM與PN的數(shù)量關(guān)系及位置關(guān)系,請(qǐng)直接寫出結(jié)論;
(2)現(xiàn)將圖①中的△CDE繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<90°),得到圖②,AE與MP、BD分別交于點(diǎn)G、H.請(qǐng)判斷(1)中的結(jié)論是否成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由;
(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫出PM與PN的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(2017﹣ 0× ﹣( 1﹣4cos45°.

查看答案和解析>>

同步練習(xí)冊(cè)答案