已知:如圖,D、E分別在AB、AC上,若AB=AC,AD=AE,∠A=60°,∠B=35°,則∠BDC的度數(shù)是


  1. A.
    80°
  2. B.
    85°
  3. C.
    90°
  4. D.
    95°
D
分析:根據(jù)SAS證△ABE≌△ACD,推出∠C=∠B,求出∠C的度數(shù),根據(jù)三角形的外角性質(zhì)得出∠BDC=∠A+∠C,代入求出即可.
解答:∵在△ABE和△ACD中

∴△ABE≌△ACD(SAS),
∴∠C=∠B,
∵∠B=35°,
∴∠C=35°,
∵∠A=60°,
∴∠BDC=∠A+∠C=95°,
故選D.
點(diǎn)評:本題考查了全等三角形的性質(zhì)和判定和三角形的外角性質(zhì)的應(yīng)用,解此題的關(guān)鍵是求出∠C的度數(shù)和得出∠BDC=∠A+∠C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,CE、CF分別是△ABC的內(nèi)外角平分線,過點(diǎn)A作CE、CF的垂線,垂足分別為E、F.
(1)求證:四邊形AECF是矩形;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形AECF是正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、已知:如圖,E,F(xiàn)分別是平行四邊形ABCD的邊AD,BC的中點(diǎn).
求證:AF=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,△BCE、△ACD分別是以BE、AD為斜邊的直角三角形,且BE=AD,△CDE是等邊三角形.求證:△ABC是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,E,F(xiàn)分別是?ABCD的邊AD,BC的中點(diǎn).求證:AF=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,BE、CF分別是△ABC的邊AC、AB上的高,在BE上截取BD=AC,在CF的延長線上截取CG=AB,連接AD、AG.請你判斷線段AD與AG有什么關(guān)系?并證明.

查看答案和解析>>

同步練習(xí)冊答案