【題目】已知關(guān)于x的方程x2-(2m+1)x+m2+m=0.
(1)求證:方程恒有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)方程兩實(shí)數(shù)根分別為x1,x2,且滿足=13,求實(shí)數(shù)m的值.
【答案】(1)證明見解析(2) m1=2,m2=-3
【解析】試題分析:(1)求根的判別式,當(dāng)△>0時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)根據(jù)根與系的關(guān)系求出兩根和與兩根積,再把x12+x22=3變形,化成和與乘積的形式,代入計(jì)算,得到一個(gè)關(guān)于m的一元二次方程,解方程.
試題解析:(1)證明:∵a=1,b=-(2m+1),c=m2+m,
∴△=[-(2m+1)]2-4×1×(m2+m)=1,
∴△>0,
∴關(guān)于x的方程x2-(2m+1)x+m2+m=0恒有兩個(gè)不相等的實(shí)數(shù)根;
(2)解:∵x12+x22=(x1+x2)2-2x1x2=(2m+1)2-2(m2+m)=2m2+2m+1
∴2m2+2m+1=13
解得:m1=2,m2=-3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn) A 在數(shù)軸上表示+2,從點(diǎn) A 沿?cái)?shù)軸平移 3 個(gè)單位到點(diǎn) B,則點(diǎn) B 表示的實(shí)數(shù)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 若一個(gè)三角形兩邊長分別是5cm和8cm,則第三邊長可能是( )
A.14cmB.13cmC.10cmD.-3cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線BC//ED.
(1)如圖1,若點(diǎn)A在直線DE上,且∠B=44°,∠EAC=57°,求∠BAC的度數(shù);
(2)如圖2,若點(diǎn)A是直線DE的上方一點(diǎn),點(diǎn)G在BC的延長線上求證:∠ACG=∠BAC+∠ABC;
(3)如圖3,FH平分∠AFE,CH平分∠ACG,且∠FHC比∠A的2倍少60°,直接寫出∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,等腰的周長為,底邊為, 的垂直平分線交于點(diǎn),交于點(diǎn).
()求的周長;
()若, 為上一點(diǎn),連結(jié), ,求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在解方程組時(shí),由于粗心,甲看錯(cuò)了方程組中的a,而得解為,乙看錯(cuò)了方程組中的b,而得解為,根據(jù)上面的信息解答:
(1)甲把a看成了什么數(shù),乙把b看成了什么數(shù)?
(2)求出正確的a,b的值;
(3)求出原方程組的正確解,并求出代數(shù)式·的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按照下列要求畫圖并填空:
(1)過點(diǎn)畫出直線的垂線,交直線于點(diǎn),那么點(diǎn)到直線的距離是線段______________的長.
(2)作出△的邊的垂直平分線,分別交邊、于點(diǎn)、,聯(lián)結(jié),那么線段是△的______________.(保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只不透明的袋子中裝有2個(gè)白球和1個(gè)紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個(gè)球(不放回),再從余下的2個(gè)球中任意摸出1個(gè)球.
(1)用樹狀圖或列表等方法列出所有可能出現(xiàn)的結(jié)果;
(2)求兩次摸到的球的顏色不同的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com