【題目】如圖,在中,,,點是斜邊的中點.點從點出發(fā)以的速度向點運動,點同時從點出發(fā)以一定的速度沿射線方向運動,規(guī)定當(dāng)點到終點時停止運動.設(shè)運動的時間為秒,連接、.
(1)填空:______;
(2)當(dāng)且點運動的速度也是時,求證:;
(3)若動點以的速度沿射線方向運動,在點、點運動過程中,如果存在某個時間,使得的面積是面積的兩倍,請你求出時間的值.
【答案】(1)8;(2)見解析;(3)或4或或.
【解析】
(1)直接可求△ABC的面積;
(2)連接CD,根據(jù)等腰直角三角形的性質(zhì)可求:∠A=∠B=∠ACD=∠DCB=45°,即BD=CD,且BE=CF,即可證△CDF≌△BDE,可得DE=DF;
(3)分△ADF的面積是△BDE的面積的兩倍和△BDE與△ADF的面積的2倍兩種情況討論,根據(jù)題意列出方程可求x的值.
解:(1)∵S△ABC=AC×BC
∴S△ABC=×4×4=8(cm2)
故答案為:8
(2)如圖:連接CD
∵AC=BC,D是AB中點
∴CD平分∠ACB
又∵∠ACB=90°
∴∠A=∠B=∠ACD=∠DCB=45°
∴CD=BD
依題意得:BE=CF
∴在△CDF與△BDE中
∴△CDF≌△BDE(SAS)
∴DE=DF
(3)如圖:過點D作DM⊥BC于點M,DN⊥AC于點N,
∵AD=BD,∠A=∠B=45°,∠AND=∠DMB=90°
∴△ADN≌△BDM(AAS)
∴DN=DM
若S△ADF=2S△BDE.
∴×AF×DN=2××BE×DM
∴|4-3x|=2x
∴x1=4,x2=
若2S△ADF=S△BDE
∴2××AF×DN=×BE×DM
∴2×|4-3x|=x
∴x1=,x2=
綜上所述:x=或4或或
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘉祥中學(xué)為加強(qiáng)現(xiàn)代信息技術(shù)教學(xué),擬投資建一個初級計算機(jī)房和一個高級計算機(jī)房,每個計算機(jī)房只配置1臺教師用機(jī),若干臺學(xué)生用機(jī).其中初級機(jī)房教師用機(jī)每臺8000元,學(xué)生用機(jī)每臺3500元,高級機(jī)房教師用機(jī)每臺11500元,學(xué)生用機(jī)每臺7000元.已知兩機(jī)房購買計算機(jī)的總錢數(shù)相等,且每個機(jī)房購買計算機(jī)的總錢數(shù)不少于20萬元也不超過21萬元.則該校擬建的初級機(jī)房,高級機(jī)房各應(yīng)有多少臺計算機(jī)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在△ABC中,BF、CF是角平分線,DE∥BC,分別交AB、AC于點D、E,DE經(jīng)過點F.結(jié)論:①△BDF和△CEF都是等腰三角形;②DE=BD+CE; ③△ADE的周長=AB+AC;④BF=CF.其中正確的是______.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E為菱形ABCD的邊CD上任意點,將CE繞點E旋轉(zhuǎn)一定角度后與AD平行.
(1)如圖,若CE旋轉(zhuǎn)后得到PE和NE,試判斷下列結(jié)論是否成立?
①BD平分AN, ;
②BD⊥AP, (填寫“成立”或“不成立”);
(2)證明(1)中你的判斷.
(3)若∠ABC=60°,AB=BM=+1,請直接寫出CE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只不透明的袋子中裝有2個白球和1個紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個球(不放回),再從余下的2個球中任意摸出1個球.
(1)用樹狀圖或列表等方法列出所有可能出現(xiàn)的結(jié)果;
(2)求兩次摸到的球的顏色不同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有A、B兩個黑布袋,A布袋中有四個除標(biāo)號外完全相同的小球,小球上分別標(biāo)有數(shù)字0,1,2,3,B布袋中有三個除標(biāo)號外完全相同的小球,小球上分別標(biāo)有數(shù)字0,1,2.小明先從A布袋中隨機(jī)取出一個小球,用m表示取出的球上標(biāo)有的數(shù)字,再從B布袋中隨機(jī)取出一個小球,用n表示取出的球上標(biāo)有的數(shù)字.
(1)用(m,n)表示小明取球時m與n的對應(yīng)值,畫出樹狀圖(或列表),寫出(m,n)的所有取值;
(2)求關(guān)于x的一元二次方程沒有實數(shù)根的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B90°,AB4,BC2,以AC為邊作△ACE,∠ACE90°,AC=CE,延長BC至點D,使CD5,連接DE.求證:△ABC∽△CED.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,∠B=90°,AB=AD,∠BAD的平分線交BC于E,連接DE.
(1)說明點D在△ABE的外接圓上;
(2)若∠AED=∠CED,試判斷直線CD與△ABE外接圓的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,點E,F分別在AB,CD上,連接EF,∠AEF,∠CFE的平分線交于點G,∠BEF,∠DFE的平分線交于點H.易證∠EHF=∠EGF=∠GEH=90°,從而可知四邊形EGFH是矩形.
小明繼續(xù)進(jìn)行了探索,過G作MN∥EF,分別交AB,CD于點M,N,過H作PQ∥EF,分別交AB,CD于點P,Q,得到四邊形MNQP,此時,他猜想四邊形MNQP是菱形,請在下列框中補全他的證明思路.
由AB∥CD,MN∥EF,PQ∥EF,易證四邊形MNQP是平行四邊形.要證平行四邊形MNQP是菱形,只要證MN=NQ.由已知條件_____,MN∥EF,可得NG=NF,故只要證GM=FQ,即證△MGE≌△QFH.易證_____,_____,故只要證∠MGE=∠QFH,易證∠MGE=∠GEF,∠QFH=∠EFH,_____,即可得證.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com