【題目】如圖,四邊形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,則四邊形ABCD的面積為( 。
A. 15 B. 12.5 C. 14.5 D. 17
【答案】B
【解析】過A作AE⊥AC,交CB的延長線于E,判定△ACD≌△AEB,即可得到△ACE是等腰直角三角形,四邊形ABCD的面積與△ACE的面積相等,根據(jù)S△ACE=×5×5=12.5,即可得出結論.
如圖,過A作AE⊥AC,交CB的延長線于E,
∵∠DAB=∠DCB=90°,
∴∠D+∠ABC=180°=∠ABE+∠ABC,
∴∠D=∠ABE,
又∵∠DAB=∠CAE=90°,
∴∠CAD=∠EAB,
又∵AD=AB,
∴△ACD≌△AEB,
∴AC=AE,即△ACE是等腰直角三角形,
∴四邊形ABCD的面積與△ACE的面積相等,
∵S△ACE=×5×5=12.5,
∴四邊形ABCD的面積為12.5,
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,三條公路兩兩相交,交點分別為A、B、C,現(xiàn)計劃修一個油庫,要求到三條公路的距離相等,可供選擇的地址有( )
A. 一處 B. 二處 C. 三處 D. 四處
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為直線x=﹣1,給出四個結論,其中正確結論是( )
A.b2<4ac
B.2a+b=0
C.a+b+c>0
D.若點B( ,y1)、C( ,y2)為函數(shù)圖象上的兩點,則y1<y2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AD是BC邊上的高,AE、BF分別是∠BAC、∠ABC的平分線,∠BAC=50°,∠ABC=60°,則∠EAD+∠ACD=( 。
A. 75° B. 80° C. 85° D. 90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,若點A(﹣1,y1)、B(﹣6,y2)是它圖象上的兩點,則y1與y2的大小關系是( )
A.y1<y2
B.y1=y2
C.y1>y2
D.不能確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)學活動課上,小明提出這樣一個問題:∠B=∠C=90°,E是BC的中點,DE平分∠ADC,如圖,則下列說法正確的有幾個?
(1)AE平分∠DAB;(2)△EBA≌△DCE; (3)AB+CD=AD;(4)AE⊥DE;(5)AB//CD;
大家一起熱烈地討論交流,小紅第一個得出正確答案,是( ).
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,將正方形的邊AD繞點A順時針旋轉到AE,連接BE、DE,過點A作AF⊥BE于F,交直線DE于P.
(1)如圖①,若∠DAE=40°,求∠P的度數(shù);
(2)如圖②,若90°<∠DAE<180°,其它條件不變,試探究線段AP、DP、EP之間的數(shù)量關系,并說明理由;
(3)繼續(xù)旋轉線段AD,若旋轉角180°<∠DAE<270°,則線段AP、DP、EP之間的數(shù)量關系為(直接寫出結果)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com