【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過(guò)點(diǎn)C,且ADMND,

BEMNE.

(1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),求證:DE=AD+BE;

(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),請(qǐng)寫(xiě)出DE、AD、BE之間的等量關(guān)系并加以證明.

(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時(shí),試問(wèn)DE、AD、BE之間又有怎樣的等量關(guān)系?請(qǐng)直接寫(xiě)出結(jié)論.

【答案】(1)證明見(jiàn)解析;(2)DE=AD-BE,證明見(jiàn)解析;(3)見(jiàn)解析.

【解析】(1)由已知AC=BC,∠ADC=∠CEB=90°,利用互余關(guān)系可證∠DAC=∠ECB,可證△ACD≌△CBE,得AD=CE,CD=BE,故AD+BE=CE+CD=DE;(2)此時(shí),仍有△ACD≌△CBE,AD=CE,CD=BE,利用線段的和差關(guān)系得DE=AD-BE.

證明:(1)∵∠ADC=∠ACB=∠BEC=90°,

∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.

∴∠CAD=∠BCE.

∵AC=BC,

∴△ADC≌△CEB.

∴CE=AD,CD=BE.

∴DE=CE+CD=AD+BE.

(2)DE=AD﹣BE

證明:∵∠ADC=∠CEB=∠ACB=90°,

∴∠ACD=∠CBE.

又∵AC=BC,

∴△ACD≌△CBE.

∴CE=AD,CD=BE.

∴DE=CE﹣CD=AD﹣BE.

(3)DE=BE﹣AD(或AD=BE﹣DE,BE=AD+DE等).

易證得△ACD≌△CBE,

∴AD=CE,DC=BE,

∴DE=CD- CE =BE﹣AD.

“點(diǎn)睛”本題考查了用旋轉(zhuǎn)法尋找證明三角形全等的條件,關(guān)鍵是利用全等三角形對(duì)應(yīng)線段相等,將有關(guān)線段進(jìn)行轉(zhuǎn)化.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016山東省聊城市第29題)(1)、已知:ABC是等腰三角形,其底邊是BC,點(diǎn)D在線段AB上,E是直線BC上一點(diǎn),且DEC=DCE,若A=60°(如圖).求證:EB=AD;

(2)、若將(1)中的點(diǎn)D在線段AB上改為點(diǎn)D在線段AB的延長(zhǎng)線上,其它條件不變(如圖),(1)的結(jié)論是否成立,并說(shuō)明理由;

(3)、若將(1)中的A=60°”改為A=90°”,其它條件不變,則的值是多少?(直接寫(xiě)出結(jié)論,不要求寫(xiě)解答過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】不透明的袋子中裝有形狀、大小、質(zhì)地完全相同的5個(gè)球,其中2個(gè)黑球、3個(gè)白球,從袋子中一次摸出3個(gè)球,下列事件是不可能事件的是( 。

A. 摸出的是3個(gè)白球

B. 摸出的是3個(gè)黑球

C. 摸出的是2個(gè)白球、1個(gè)黑球

D. 摸出的是2個(gè)黑球、1個(gè)白球

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD是△ABC的中線,E、F分別是ADAD延長(zhǎng)線上的點(diǎn),DE=DF,連接BF、CE,下列說(shuō)法:①CE=BF;②△ABD和△ACD面積相等;③BFCE;④△BDF≌△CDE.

其中正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016廣東省梅州市第24題)(為方便答題,可在答題卡上畫(huà)出你認(rèn)為必要的圖形)

如圖,在平面直角坐標(biāo)系中,已知拋物線過(guò)A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)是,點(diǎn)C的坐標(biāo)是,動(dòng)點(diǎn)P在拋物線上.

(1)b =_________,c =_________,點(diǎn)B的坐標(biāo)為_(kāi)____________;(直接填寫(xiě)結(jié)果)

(2)是否存在點(diǎn)P,使得ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;

(3)過(guò)動(dòng)點(diǎn)P作PE垂直y軸于點(diǎn)E,交直線AC于點(diǎn)D,過(guò)點(diǎn)D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長(zhǎng)度最短時(shí),求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某招聘考試分筆試和面試兩種,其中筆試按60%、面試按40%計(jì)算加權(quán)平均數(shù),作為總成績(jī).孔明筆試成績(jī)90分,面試成績(jī)85分,那么孔明的總成績(jī)是分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察如圖所示的圖形,寫(xiě)出下列問(wèn)題的結(jié)果:

(1)這個(gè)圖形的名稱是   ;

(2)這個(gè)幾何體有   個(gè)面,  個(gè)底面,   個(gè)側(cè)面,底面是    ,側(cè)面是    .

(3)側(cè)面的個(gè)數(shù)與底面多邊形的邊數(shù)有什么關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C在線段AB上,AC=8 cm,CB=6 cm,點(diǎn)M、N分別是AC、BC的中點(diǎn).

(1)求線段MN的長(zhǎng);

(2)若C為線段AB上任一點(diǎn),滿足AC+CB=a cm,其它條件不變,你能猜想MN的長(zhǎng)度嗎?并說(shuō)明理由;

(3)若C在線段AB的延長(zhǎng)線上,且滿足ACBC=bcm,M、N分別為ACBC的中點(diǎn),你能猜想MN的長(zhǎng)度嗎?請(qǐng)畫(huà)出圖形,寫(xiě)出你的結(jié)論,并說(shuō)明理由;

(4)你能用一句簡(jiǎn)潔的話,描述你發(fā)現(xiàn)的結(jié)論嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,CD是AB邊上的中線,已知B=45,tanACB=3,AC=,

求:(1)ABC的面積;(2)sinACD的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案