【題目】列出下列問題中的函數(shù)關(guān)系式,并判斷它們是否為反比例函數(shù).
(1)某農(nóng)場的糧食總產(chǎn)量為1 500t,則該農(nóng)場人數(shù)y(人)與平均每人占有糧食量x(t)的函數(shù)關(guān)系式;
(2)在加油站,加油機(jī)顯示器上顯示的某一種油的單價(jià)為每升4.75元,總價(jià)從0元開始隨著加油量的變化而變化,則總價(jià)y(元)與加油量x(L)的函數(shù)關(guān)系式;
(3)小明完成100m賽跑時(shí),時(shí)間t(s)與他跑步的平均速度v(m/s)之間的函數(shù)關(guān)系式.
【答案】(1)y=是反比例函數(shù);(2)y=4.75x是正比例函數(shù);(3)t=是反比例函數(shù)
【解析】試題分析: (1)由平均數(shù),得x=,即y=是反比例函數(shù),
(2)由單價(jià)乘以油量等于總價(jià),得y=4.75x,即y=4.75x是正比例函數(shù),
(3)由路程與時(shí)間的關(guān)系,得t=,即t=是反比例函數(shù).
試題解析:(1)由平均數(shù),得x=,即y=是反比例函數(shù),
(2)由單價(jià)乘以油量等于總價(jià),得y=4.75x,即y=4.75x是正比例函數(shù),
(3)由路程與時(shí)間的關(guān)系,得t=,即t=是反比例函數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分線分別交AB和AC于點(diǎn)D,E.
(1)求證:AE=2CE;
(2)連接CD,請(qǐng)判斷△BCD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=2AB,點(diǎn)E,F(xiàn)分別是AD,BC的中點(diǎn),連接AF與BE,CE與DF分別交于點(diǎn)M,N兩點(diǎn),則四邊形EMFN是( )
A. 正方形 B. 菱形 C. 矩形 D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一”期間,小華和媽媽到某景區(qū)游玩,小明想利用所學(xué)的數(shù)學(xué)知識(shí),估測景區(qū)里的觀景塔的高度,他從點(diǎn)處的觀景塔出來走到點(diǎn)處.沿著斜坡從點(diǎn)走了米到達(dá)點(diǎn),此時(shí)回望觀景塔,更顯氣勢宏偉.在點(diǎn)觀察到觀景塔頂端的仰角為且,再往前走到處,觀察到觀景塔頂端的仰角,測得之間的水平距離米,則觀景塔的高度約為( ) 米. ()
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,已知點(diǎn)M是線段AB的黃金分割點(diǎn),且AM>BM,AD=AM,F(xiàn)B=BM,EF和GM把矩形ABCD分成四個(gè)小矩形,其面積分別用S1,S2,S3,S4表示,EF與MG相交與點(diǎn)N,則以下結(jié)論正確的有( 。
①N是GM的黃金分割點(diǎn) ②S1=S4③.
A. ①② B. ①③ C. ③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB=10,BC=8,P、Q分別是AB、BC邊上的點(diǎn),且AP=BQ=a (其中0<a<8).
(1)若PQ⊥BC,求a的值;
(2)若PQ=BQ,把線段CQ繞著點(diǎn)Q旋轉(zhuǎn)180°,試判別點(diǎn)C的對(duì)應(yīng)點(diǎn)C’是否落在線段QB上?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在等邊三角形中,是邊上的動(dòng)點(diǎn),以為一邊,向上作等邊三角形,連接.
(1)和全等嗎?請(qǐng)說明理由;
(2)試說明:;
(3)如圖(2),將動(dòng)點(diǎn)運(yùn)動(dòng)到邊的延長線上,所作三角形仍為等邊三角形,請(qǐng)問是否仍有?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB垂直弦CD于點(diǎn)E,點(diǎn)F在AB的延長線上,且∠BCF=∠A.
(1)求證:直線CF是⊙O的切線;
(2)若⊙O的半徑為5,DB=4.求sin∠D的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com