【題目】設(shè)x1、x2是關(guān)于x的方程2x2﹣4mx+2m2+3m+2=0的兩個(gè)實(shí)根,當(dāng)m=_____時(shí),x12+x22有最小值為_____.
【答案】- ;
【解析】
由根與系數(shù)的關(guān)系知x12+x22是關(guān)于m的二次函數(shù),是否是在拋物線的頂點(diǎn)處取得最小值,就要看自變量m的取值范圍,從判別式入即可求解.
解:∵x1、x2是方程2x2﹣4mx+2m2+3m+2=0的兩個(gè)實(shí)根,
∴△=(﹣4m)2﹣4×2×(2m2+3m+2)≥0,可得m≤﹣,
又∵x1+x2=2m,x1x2=,
∴x12+x22=(x1+x2)2﹣2x1x2=(2m)2﹣2×=2(m﹣)2﹣,
∵m≤﹣,
∴當(dāng)m=﹣時(shí),x12+x22取得最小值為2×(﹣)2﹣=.
故答案為:﹣,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小剛從家出發(fā)勻速步行去學(xué)校上學(xué).幾分鐘后發(fā)現(xiàn)忘帶數(shù)學(xué)作業(yè),于是掉頭原速返回并立即打電話給爸爸,掛斷電話后爸爸立即勻速跑步去追小剛,同時(shí)小剛以原速的兩倍勻速跑步回家,爸爸追上小剛后以原速的倍原路步行回家.由于時(shí)間關(guān)系小明拿到作業(yè)后同樣以之前跑步的速度趕往學(xué)校,并在從家出發(fā)后23分鐘到校(小剛被爸爸追上時(shí)交流時(shí)間忽略不計(jì)).兩人之間相距的路程y(米)與小剛從家出發(fā)到學(xué)校的步行時(shí)間x(分鐘)之間的函數(shù)關(guān)系如圖所示,則小剛家到學(xué)校的路程為_____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC與BD交于點(diǎn)O,點(diǎn)E在AD上,且DE=CD,連接OE,∠ABE=∠ACB,若AE=2,則OE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為等邊的高,,點(diǎn)P為直線上的動(dòng)點(diǎn)(不與點(diǎn)B重合),連接,將線段繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)60°,得到線段,連接、.
(1)問題發(fā)現(xiàn):如圖①,當(dāng)點(diǎn)D在直線上時(shí),線段與的數(shù)量關(guān)系為_________,_________;
(2)拓展探究:如圖②,當(dāng)點(diǎn)P在的延長線上時(shí),(1)中結(jié)論是否成立?若成立,請加以證明;若不成立,請說明理由;
(3)問題解決:當(dāng)時(shí),請直接寫出線段的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,O是線段BC上一點(diǎn),以O為圓心,OC為半徑作⊙O,AB與⊙O相切于點(diǎn)F,直線AO交⊙O于點(diǎn)E,D.
(1)求證:AO是△CAB的角平分線;
(2)若tan∠D=,AE=2,求AC的長.
(3)在(2)條件下,連接CF交AD于點(diǎn)G,⊙O的半徑為3,求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C是弧AB的中點(diǎn),連接AC并延長至點(diǎn)D,使CD=AC,點(diǎn)E是OB上一點(diǎn),且,CE的延長線交D的延長線于點(diǎn)F,AF交⊙O于點(diǎn)H,連接BH.
(1)求證:BD是⊙O的切線;
(2)當(dāng)OB=2時(shí),求AH的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線(a≠0)的對稱軸為直線,且拋物線經(jīng)過A(1,0),C(0,3)兩點(diǎn),與軸交于點(diǎn)B.
(1)若直線經(jīng)過B,C兩點(diǎn),求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸上找一點(diǎn)M,使MA+MC的值最小,求點(diǎn)M的坐標(biāo);
(3)設(shè)P為拋物線的對稱軸上的一個(gè)動(dòng)點(diǎn),求使ΔBPC為直角三角形的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為鼓勵(lì)下崗工人再就業(yè),某地市政府規(guī)定,企業(yè)按成本價(jià)提供產(chǎn)品給下崗人員自主銷售,成本價(jià)與出廠價(jià)之間的差價(jià)由政府承擔(dān).老李按照政策投資銷售本市生產(chǎn)的一種兒童面條.已知這種兒童面條的成本價(jià)為每袋12元,出廠價(jià)為每袋16元,每天銷售量(袋)與銷售單價(jià)(元)之間的關(guān)系近似滿足一次函數(shù):.
(1)老李在開始創(chuàng)業(yè)的第1天將銷售單價(jià)定為17元,那么政府這一天為他承擔(dān)的總差價(jià)為多少元?
(2)設(shè)老李獲得的利潤為(元),當(dāng)銷售單價(jià)為多少元時(shí),每天可獲得最大利潤?
(3)物價(jià)部門規(guī)定,這種面條的銷售單價(jià)不得高于24元,如果老李想要每天獲得的利潤不低于216元,那么政府每天為他承擔(dān)的總差價(jià)最少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)都是實(shí)數(shù),且.我們規(guī)定:滿足不等式的實(shí)數(shù)的所有值的全體叫做閉區(qū)間、表示為.對于一個(gè)函數(shù),如果它的自變量與函數(shù)值滿足:當(dāng)時(shí),有,我們就稱此函數(shù)是閉區(qū)間上的“閉函數(shù)”.
(1)反比例函數(shù)是閉區(qū)間上的“閉函數(shù)”嗎?請判斷并說明理由;
(2)若一次函數(shù)是閉區(qū)間上的“閉函數(shù)”,求此一次函數(shù)的解析式;
(3)若實(shí)數(shù)滿足.且,當(dāng)二次函數(shù)是閉區(qū)間上的“閉函數(shù)”時(shí),求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com