【題目】正方形網(wǎng)格中(網(wǎng)格中的每個小正方形邊長是1),△ABC的頂點均在格點上,請在所給的直角坐標系中解答下列問題:
(1)作出△ABC繞點A逆時針旋轉(zhuǎn)90°的△AB1C1,再作出△AB1C1關(guān)于原點O成中心對稱的△A1B2C2.
(2)點B1的坐標為 ,點C2的坐標為 .
(3)△ABC經(jīng)過怎樣的旋轉(zhuǎn)可得到△A1B2C2, .
【答案】(1)圖解見解析(2)B1(﹣2,﹣3),C2(3,1);(3)△ABC繞點(0,﹣1)順時針旋轉(zhuǎn)90°
【解析】
試題分析:(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點B、C的對應(yīng)點B1、C1的位置,然后順次連接即可,再找出點A1、B2、C2的位置,然后順次連接即可;
(2)根據(jù)平面直角坐標系寫出各點的坐標;
(3)根據(jù)圖形,利用旋轉(zhuǎn)的旋轉(zhuǎn)解答.
解:(1)△AB1C1,△A1B2C2如圖所示;
(2)B1(﹣2,﹣3),C2(3,1);
(3)△ABC繞點(0,﹣1)順時針旋轉(zhuǎn)90°得到△A1B2C2.
故答案為:(2)(﹣2,﹣3),(3,1);(3)△ABC繞點(0,﹣1)順時針旋轉(zhuǎn)90°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB=90°,射線OA繞點O逆時針方向以每秒6°的速度旋轉(zhuǎn)(當旋轉(zhuǎn)角度等于360°時,OA停止旋轉(zhuǎn)),同時OB繞點O以每秒2°的速度旋轉(zhuǎn)(當OA停止旋轉(zhuǎn)時,OB同樣停止旋轉(zhuǎn)).求當OA旋轉(zhuǎn)多少秒,旋轉(zhuǎn)后的OA與OB形成的角度為50°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古籍《周髀算經(jīng)》中早有記載“勾三股四弦五”,下面我們來探究兩類特殊的勾股數(shù).通過觀察完成下面兩個表格中的空格(以下a、b、c為Rt△ABC的三邊,且a<b<c):
表一 表二
a | b | c | a | b | c | |
3 | 4 | 5 | 6 | 8 | 10 | |
5 | 12 | 13 | 8 | 15 | 17 | |
7 | 24 | 25 | 10 | 24 | 26 | |
9 | 41 | 12 | 37 |
(1)仔細觀察,表一中a為大于1的奇數(shù),此時b、c的數(shù)量關(guān)系是_____________,
a、b、c之間的數(shù)量關(guān)系是_________________________;
(2)仔細觀察,表二中a為大于4的偶數(shù),此時b、c的數(shù)量關(guān)系是_____________,
a、b、c之間的數(shù)量關(guān)系是_________________________;
(3)我們還發(fā)現(xiàn),表一中的三邊長“3,4,5”與表二中的“6,8,10”成倍數(shù)關(guān)系,表一中的“5,12,13”與表二中的“10,24,26”恰好也成倍數(shù)關(guān)系……請直接利用這一規(guī)律計算:在Rt△ABC中,當,時,斜邊c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是⊙O的切線,切點為A,AB是⊙O的弦.過點B作BC∥AD,交⊙O于點C,連接AC,過點C作CD∥AB,交AD于點D.連接AO并延長交BC于點M,交過點C的直線于點P,且∠BCP=∠ACD.
(1)判斷直線PC與⊙O的位置關(guān)系,并說明理由;
(2)若AB=9,BC=6.求PC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將形狀、大小完全相同的“”和線段按照一定規(guī)律擺成下列圖形.第1幅圖形中“”的個數(shù)為,第2幅圖形中“”的個數(shù)為,第3幅圖形中“”的個數(shù)為,……,以此類推,解決以下問題:
(1)直接寫出 , (用含n的代數(shù)式表示);
(2)猜想是否存在某幅圖中“”的個數(shù)為2018,若存在,直接寫出n的值;若不存在,則直接寫出2018至少再加上多少后所得的數(shù)正好是某幅圖中黑點的個數(shù),并直接寫出此時n的值;
(3)求出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板按如圖放置,則下列結(jié)論:
①如果∠2=30°,則有AC∥DE;
②∠BAE+∠CAD =180°;
③如果BC∥AD,則有∠2=45°;
④如果∠CAD=150°,必有∠4=∠C;
正確的有( )
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E點為DF上的點,B為AC上的點,,,求證:DF∥AC.
證明:∵ (已知),∠1=∠3,∠2=∠4( ),
∴∠3=∠4(等量代換).
∴____________________( ).
∴∠C=∠ABD( ).
∵∠C=∠D( ),
∴∠D=__________( ).
∴AC∥DF( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,EG、EM、FM分別平分∠AEF,∠BEF,∠EFD,則圖中與∠DFM相等的角(不含它本身)的個數(shù)為( )
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)對全校學(xué)生進行文明禮儀知識測試,為了解測試結(jié)果,隨機抽取部分學(xué)生的成績進行分析,將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如圖兩幅統(tǒng)計圖(不完整).
請你根據(jù)圖中所給的信息解答下列問題:
(1)這次測試,一共抽取了名學(xué)生;
(2)請將以上兩幅統(tǒng)計圖補充完整;(注:扇形圖補百分比,條形圖補“優(yōu)秀”人數(shù)與高度);
(3)若“一般”和“優(yōu)秀”均被視為達標成績,該校學(xué)生有1200人,請你估計此次測試中,全校達標的學(xué)生有多少人.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com