某商場購進一批單價為50元的商品,規(guī)定銷售時單價不低于進價,每件的利潤不超過40%.其中銷售量y(件)與所售單價x(元)的關(guān)系可以近似的看作如圖所表示的一次函數(shù).

(1)求y與x之間的函數(shù)關(guān)系式,并求出x的取值范圍;

(2)設(shè)該公司獲得的總利潤(總利潤=總銷售額-總成本)為w元,求w與x之間的函數(shù)關(guān)系式.當銷售單價為何值時,所獲利潤最大?最大利潤是多少?

 

【答案】

(1)y=-10x+1000,50≤x≤70;(2)w=-10(x-75)2+6250,x=70,利潤最大為6000元

【解析】

試題分析:(1)設(shè)y與x的函數(shù)關(guān)系式為y=kx+b(k≠0),根據(jù)待定系數(shù)法即可求得結(jié)果;

(2)先根據(jù)總利潤=總銷售額-總成本列出w與x之間的函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的性質(zhì)即得結(jié)果.

(1)最高銷售單價為50(1+40%)=70(元)

根據(jù)題意設(shè)y與x的函數(shù)關(guān)系式為y=kx+b(k≠0)

∵ 函數(shù)圖象經(jīng)過點(60,400)和(70,300),

 解得

∴y與x之間的函數(shù)關(guān)系式為y=-10x+1000,x的取值范圍是50≤x≤70;

(2)由題意得w=(x-50)(-10x+1000)-10x2+1500x-50000=-10(x-75)2+6250

∵a=-10 ,

∴拋物線開口向下.

又∵ 對稱軸是x=75,自變量x的取值范圍是50≤x≤70,

∴y隨x的增大而增大

∴ 當x=70時,w最大值=-10(70-75)2+6250=6000(元).

∴ 當銷售單價為70元時,所獲得利潤有最大值為6000元

考點:二次函數(shù)的應(yīng)用

點評:本題知識點多,綜合性強,難度較大,一般是中考壓軸題,主要考查學生對二次函數(shù)的性質(zhì)的熟練掌握情況.

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

某商場購進一批單價為16元的日用品,經(jīng)試銷發(fā)現(xiàn),若按每件20元的價格銷售時,每月能賣360件,若按每件25元的價格銷售時,每月能賣210件,假定每月銷售件數(shù)y(件)是價格x(元/件)的一次函數(shù),則y與x之間的關(guān)系式是
,銷售所獲得的利潤為w(元)與價格x(元/件)的關(guān)系式是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某商場購進一批單價為16元的日用品,銷售一段時間后,經(jīng)調(diào)查發(fā)現(xiàn),若按每件20元的價格銷售時,每月能賣360件;若按每件25元的價格銷售時,每月能賣210件,若每月銷售件數(shù)y(件)與價格x(元/件)滿足關(guān)系y=kx+b
(1)確定y與x的函數(shù)關(guān)系式,并指出x的取值范圍;
(2)為了使每月獲得利潤為1800元,問商品應(yīng)定為每件多少元?
(3)為了獲得了最大的利潤,商品應(yīng)定為每件多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•鞍山)某商場購進一批單價為4元的日用品.若按每件5元的價格銷售,每月能賣出3萬件;若按每件6元的價格銷售,每月能賣出2萬件,假定每月銷售件數(shù)y(件)與價格x(元/件)之間滿足一次函數(shù)關(guān)系.
(1)試求y與x之間的函數(shù)關(guān)系式;
(2)當銷售價格定為多少時,才能使每月的利潤最大?每月的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某商場購進一批單價為16元的日用品.若若按每件23元的價格銷售,每月能賣出270件;若按每件28元的價格銷售,每月能賣出120件;若規(guī)定售價不得低于23元,假定每月銷售件數(shù)y(件)與價格x(元/件)之間滿足一次函數(shù).
(1)試求y與x之間的函數(shù)關(guān)系式.
(2)若要使某月的毛利潤為1800元,售價應(yīng)定為多少元?
(3)在商品不積壓且不考慮其他因素的條件下,銷售價格定為多少時,才能使每月的毛利潤w最大?每月的最大毛利潤為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某商場購進一批單價為16元的日用品.若按每件23元的價格銷售,每月能賣出270件;若按每件28元的價格銷售,每月能賣出120件;若規(guī)定售價不得低于23元,假定每月銷售件數(shù)y(件)與價格x(元/件)之間滿足一次函數(shù).
(1)試求y與x之間的函數(shù)關(guān)系式.
(2)在商品不積壓且不考慮其他因素的條件下,銷售價格定為多少時,才能使每月的毛利潤w最大?每月的最大毛利潤為多少?
(3)若要使某月的毛利潤為1800元,售價應(yīng)定為多少元?

查看答案和解析>>

同步練習冊答案