【題目】如圖,在平面直角坐標系中,直線軸、軸分別交于兩點,拋物線經(jīng)過兩點,與軸交于另一點.

1)求拋物線解析式及點坐標;

2)連接,求的面積;

3)若點為拋物線上一動點,連接,當點運動到某一位置時,面積為的面積的倍,求此時點的坐標.

【答案】1,;(2;(3點的坐標為, ,,見解析.

【解析】

1)利用兩點是一次函數(shù)上的點求出兩點,再代入二次函數(shù)求解即可.

2)根據(jù),求出,求出△ABC.

3)根據(jù)面積為的面積的倍,求出,得出求出此時M的坐標即可.

1)解:∵直線

∴令,則,解得

,則,∴

將點,代入中得,

,解得

∴拋物線的解析式為:;

,則,解得

.

2)解:∵,

3)∵面積為的面積的倍,

∵AB=4 ,

,

∴拋物線的頂點坐標為符合條件,

時,,解的,x1=,x2=

點的坐標為3,-4), ,.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】1)先化簡,再求值: x2xy2+(﹣2x+y2),其中x2,y=﹣3

2)已知:若ab互為相反數(shù),c,d互為倒數(shù),m的絕對值為最小正整數(shù),求代數(shù)式﹣2cd+m的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是張亮、李娜兩位同學零花錢全學期各項支出的統(tǒng)計圖.根據(jù)統(tǒng)計圖,下列對兩位同學購買書籍支出占全學期總支出的百分比作出的判斷中,正確的是(

A. 張亮的百分比比李娜的百分比大 B. 張娜的百分比比張亮的百分比大

C. 張亮的百分比與李娜的百分比一樣大 D. 無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知梯形ABCD中,ABCD,D=90°,BE平分∠ABC,交CD于點E,F(xiàn)AB的中點,聯(lián)結(jié)AE、EF,且AEBE.

求證:(1)四邊形BCEF是菱形;

(2).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC為直角三角形,∠C=90°,BC=2cm,A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點C、B、E、F在同一條直線上,點B與點E重合.RtABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當點C與點F重合時停止.設(shè)RtABC與矩形DEFG的重疊部分的面積為ycm2,運動時間xs.能反映ycm2xs之間函數(shù)關(guān)系的大致圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校中午學生用餐比較擁擠,為建議學校分年級錯時用餐,李老師帶領(lǐng)數(shù)學學習小組在某天隨機調(diào)查了部分學生,統(tǒng)計了他們從下課到就餐結(jié)束所用的時間,并繪制成統(tǒng)計表和如圖所示的不完整統(tǒng)計圖.

根據(jù)以上提供的信息,解答下列問題:

1)表中a=_____,b=_____,c=_____,補全頻數(shù)分布直方圖;

2)此次調(diào)查中,中位數(shù)所在的時間段是_____min

時間分段/min

頻(人)數(shù)

百分比

10≤x<15

8

20%

15≤x<20

14

a

20≤x<25

10

25%

25≤x<30

b

12.50%

30≤x<35

3

7.50%

合計

c

100%

3)這所學校共有1200人,試估算從下課到就餐結(jié)束所用時間不少于20min的共有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某汽車交易市場為了解二手轎車的交易情況,將本市場去年成交的二手轎車的全部數(shù)據(jù),以二手轎車交易前的使用時間為標準分為A、B、C、D、E五類,并根據(jù)這些數(shù)據(jù)由甲,乙兩人分別繪制了下面的兩幅統(tǒng)計圖(圖都不完整).

請根據(jù)以上信息,解答下列問題:

(1)該汽車交易市場去年共交易二手轎車   輛.

(2)把這幅條形統(tǒng)計圖補充完整.(畫圖后請標注相應(yīng)的數(shù)據(jù))

(3)在扇形統(tǒng)計圖中,D類二手轎車交易輛數(shù)所對應(yīng)扇形的圓心角為   度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:AB是⊙O的直徑,AC交⊙OG,EAG上一點,D為△BCE內(nèi)心,BEADF,且∠DBE=BAD.

(1)求證:BC是⊙O的切線;

(2)求證:DF=DG;

(3)若∠ADG=45°,DF=1,則有兩個結(jié)論:①ADBD的值不變;②ADBD的值不變,其中有且只有一個結(jié)論正確,請選擇正確的結(jié)論,證明并求其值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y=2x7平移后的圖象l經(jīng)過點(3,-2),

(1)l的函數(shù)解析式;并畫出該函數(shù)的圖象;

(2)lx軸交于點A,點Pl上一點,且SAOP=,求點P的坐標.

查看答案和解析>>

同步練習冊答案