如圖,將一塊直角三角板OAB放在平面直角坐標(biāo)系中,B(2,0),∠AOB=60°,點(diǎn)A在第一象限,過(guò)點(diǎn)A的雙曲線為y=
kx
.在x軸上取一點(diǎn)P,過(guò)點(diǎn)P作直線OA的垂線l,以直線l為對(duì)稱軸,線段OB經(jīng)軸對(duì)稱變換后的像是O′B′.當(dāng)點(diǎn)O′與點(diǎn)A重合時(shí),點(diǎn)P的坐標(biāo)是
(4,0)
(4,0)
分析:根據(jù)軸對(duì)稱變換的性質(zhì)得到當(dāng)點(diǎn)O′與點(diǎn)A重合時(shí),直線l垂直平分OA,則PA=PB,由B(2,0),∠AOB=60°,根據(jù)含30度的直角三角形三邊的關(guān)系得到AB=
3
OB=2
3
,然后設(shè)P點(diǎn)坐標(biāo)為(x,0),則PA=PB=x,PB=x-2,在Rt△PAB中利用勾股定理得到x2=(x-2)2+(2
3
2,解得x=4,即可確定P點(diǎn)坐標(biāo).
解答:解:點(diǎn)O′與點(diǎn)A重合時(shí),直線l垂直平分OA,如圖,
連PA,則PA=PO,
∵B(2,0),∠AOB=60°,
∴OB=2,
∴AB=
3
OB=2
3

設(shè)P點(diǎn)坐標(biāo)為(x,0),則PA=PO=x,PB=x-2,
在Rt△PAB中,PA2=PB2+AB2,即x2=(x-2)2+(2
3
2,解得x=4,
∴P點(diǎn)坐標(biāo)為(4,0).
故答案為(4,0).
點(diǎn)評(píng):本題考查了軸對(duì)稱變換的性質(zhì):軸對(duì)稱變換不改變?cè)瓐D形的形狀和大小,即變換后圖形與原圖形全等.也考查了勾股定理以及含30度的直角三角形三邊的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,將一塊直角三角板OAB放在平面直角坐標(biāo)系中,B(2,0),∠AOB=60°,點(diǎn)A在第一象限,過(guò)點(diǎn)A的雙曲線為y=
kx
.在x軸上取一點(diǎn)P,過(guò)點(diǎn)P作直線OA的垂線l,以直線l為對(duì)稱軸,線段OB經(jīng)軸對(duì)稱變換后的像是O′B′.
(1)當(dāng)點(diǎn)O′與點(diǎn)A重合時(shí),點(diǎn)P的坐標(biāo)是
 
;
(2)設(shè)P(t,0),當(dāng)O′B′與雙曲線有交點(diǎn)時(shí),t的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將一塊直角三角板OAB放在平面直角坐標(biāo)系中,B(2,0),∠AOB=60°,點(diǎn)A在第一象限,過(guò)點(diǎn)A的雙曲線為y=
kx
.在x軸上取一點(diǎn)P,過(guò)點(diǎn)P作直線OA的垂線l,以直線l為對(duì)稱軸,線段OB經(jīng)軸對(duì)稱變換后的像是O′B′.
(1)當(dāng)點(diǎn)O′與點(diǎn)A重合時(shí),求點(diǎn)P的坐標(biāo).
(2)設(shè)P(t,0),當(dāng)O′B′與雙曲線有交點(diǎn)時(shí),t的取值范圍是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•潮陽(yáng)區(qū)模擬)如圖,將一塊直角三角板ABC和半圓形量角器按圖中方式疊放,其中∠A=30°,半圓O的直徑MN與直線AC重疊,且切AB于點(diǎn)E,交BC于點(diǎn)F,若測(cè)得OM=6cm,∠AOF=120°,求圖中陰影部分的面積.(結(jié)果可保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將一塊直角三角板放置在圓上,使30°角的頂點(diǎn)落在圓上,角的兩邊與⊙O相交于A、B兩點(diǎn),OA=6cm,則弦AB=
6
6
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案