【題目】1)如圖1AMCN,求證:

MAB+ABC+BCN360°;

MAE+AEF+EFC+FCN540°;

2)如圖2,若平行線AMCN間有n個(gè)點(diǎn),根據(jù)(1)中的結(jié)論寫(xiě)出你的猜想并證明.

【答案】1)①詳見(jiàn)解析;②詳見(jiàn)解析;(2)猜想:若平行線間有n個(gè)點(diǎn),則所有角的和為(n+1180°,證明詳見(jiàn)解析

【解析】

1)①過(guò)點(diǎn)作BGAM,則AMCNBG,依據(jù)平行線的性質(zhì),即可得到∠ABG+BAM180°,∠CBG+BCN180°,即可得到結(jié)論;②過(guò)EEPAM,過(guò)FFQCN,依據(jù)平行線的性質(zhì),即可得到∠MAE+AEP180°,∠FEP+EFQ180°,∠CFQ+FCN180°,即可得到結(jié)論;(2)過(guò)n個(gè)點(diǎn)作AM的平行線,則這些直線互相平行且與CN平行,即可得出所有角的和為(n+1180°

解:(1證明:如圖1,過(guò)點(diǎn)作BGAM,則AMCNBG

∴∠ABG+BAM180°,∠CBG+BCN180°

∴∠ABG+BAM+CBG+BCN360°

∴∠MAB+ABC+BCN360°

如圖,過(guò)EEPAM,過(guò)FFQCN,

AMCN,∴EPFQ,

∴∠MAE+AEP180°,∠FEP+EFQ180°,∠CFQ+FCN180°

∴∠MAE+AEF+EFC+FCN180°×3540°;

2)猜想:若平行線間有n個(gè)點(diǎn),則所有角的和為(n+1180°.

證明:如圖2,過(guò)n個(gè)點(diǎn)作AM的平行線,則這些直線互相平行且與CN平行,

∴結(jié)合(1)問(wèn)得:

所有角的和為(n+1180°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)定義:直角三角形兩直角邊的平方和等于斜邊的平方。如:直角三角形的直角邊分別為3、4,則斜邊的平方=32+42=25.已知:RtABC,C=90°,AC=8,AB=10,直接寫(xiě)出BC2=___.

(2)應(yīng)用:已知正方形ABCD的邊長(zhǎng)為4,點(diǎn)PAD邊上的一點(diǎn),AP=AD,請(qǐng)利用兩點(diǎn)之間線段最短這一原理,在線段AC上畫(huà)出一點(diǎn)M,使MP+MD最小,并直接寫(xiě)出最小值的平方為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中,∠B=90°AB=16cm,BC=12cm,P、QABC邊上的兩個(gè)動(dòng)點(diǎn),其中點(diǎn)P從點(diǎn)A開(kāi)始沿A→B方向運(yùn)動(dòng),且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開(kāi)始沿B→C→A方向運(yùn)動(dòng),且速度為每秒2cm,它們同時(shí)出發(fā),設(shè)出發(fā)的時(shí)間為t秒.

1)出發(fā)2秒后,求PQ的長(zhǎng).

2)當(dāng)點(diǎn)Q在邊BC上運(yùn)動(dòng)時(shí),出發(fā)幾秒鐘后,PQB能形成等腰三角形?

3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動(dòng)時(shí),求能使BCQ成為等腰三角形的運(yùn)動(dòng)時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形MNPQ放置在矩形ABCD中,使點(diǎn)MN分別在AB,AD邊上滑動(dòng),若MN=6,PN=4,在滑動(dòng)過(guò)程中,點(diǎn)A與點(diǎn)P的距離AP的最大值為( 。

A. 4 B. 2 C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,∠ABC=60°,AB=4,點(diǎn)DBC上一動(dòng)點(diǎn),以BD為邊在BC的右側(cè)作等邊△BDE,FDE的中點(diǎn),連結(jié)AF,CF,則AF+CF的最小值是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在我市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計(jì)劃購(gòu)進(jìn)一批電腦和電子白板,經(jīng)過(guò)市場(chǎng)考察得知,購(gòu)買(mǎi)1臺(tái)電腦和2臺(tái)電子白板需要3.5萬(wàn)元,購(gòu)買(mǎi)2臺(tái)電腦和1臺(tái)電子白板需要2.5萬(wàn)元.

1)求每臺(tái)電腦、每臺(tái)電子白板各多少萬(wàn)元?

2)根據(jù)學(xué)校實(shí)際,需購(gòu)進(jìn)電腦和電子白板共30臺(tái),總費(fèi)用不超過(guò)30萬(wàn)元,但不低于28萬(wàn)元,該校有幾種購(gòu)買(mǎi)方案?

3)上面的哪種方案費(fèi)用最低?按費(fèi)用最低方案購(gòu)買(mǎi)需要多少錢(qián)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P、Q分別是邊長(zhǎng)為4cm的等邊△ABCAB、BC上的動(dòng)點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且速度都為1cm/s,連接AQ、CP交于點(diǎn)M,下面四個(gè)結(jié)論:BP=CM;②△ABQ≌△CAP;③∠CMQ的度數(shù)不變,始終等于60°;④當(dāng)?shù)?/span>秒或第秒時(shí),△PBQ為直角三角形,正確的有幾個(gè) ( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在O中,直徑AB=2,CA切O于A,BC交O于D,若C=45°,則

(1)BD的長(zhǎng)是   ;

(2)求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小區(qū)為了綠化環(huán)境,計(jì)劃分兩次購(gòu)進(jìn)AB兩種花草,第一次分別購(gòu)進(jìn)A、B兩種花草30棵和15棵,共花費(fèi)675元;第二次分別購(gòu)進(jìn)AB兩種花草12棵和5兩次共花費(fèi)940兩次購(gòu)進(jìn)的A、B兩種花草價(jià)格均分別相同

、B兩種花草每棵的價(jià)格分別是多少元?

若再次購(gòu)買(mǎi)A、B兩種花草共12、B兩種花草價(jià)格不變,且A種花草的數(shù)量不少于B種花草的數(shù)量的4倍,請(qǐng)你給出一種費(fèi)用最省的方案,并求出該方案所需費(fèi)用.

查看答案和解析>>

同步練習(xí)冊(cè)答案