【題目】解下列方程:

1.

2.

【答案】1x=-3;(2)原方程無解.

【解析】

1)方程兩邊同乘以最簡公分母,把分式方程去分母轉(zhuǎn)化為整式方程求解;

2)方程兩邊同乘以最簡公分母,把分式方程去分母轉(zhuǎn)化為整式方程求解;

注意:求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.

解:(1)去分母,得xx1)﹣4x21,

去括號,得x2x4x21,

整理,得x+30

所以,x=﹣3,

經(jīng)檢驗,x=-3是原方式方程的解,

所以原分式方程的解為:x=-3

2)去分母得:(x22﹣(x+2216,

整理得:﹣8x16

解得:x=﹣2,

當(dāng)x=-2時,x240,

所以x=-2不是原方程的解.

所以原方程無解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級1班體育委員統(tǒng)計了全班同學(xué)60秒跳繩的次數(shù),并繪制出如下頻數(shù)分布表和頻數(shù)分布直方圖:

次數(shù)

80≤x<100

100≤x<120

120≤x<140

140≤x<160

160≤x<180

180≤x<200

頻數(shù)

a

4

12

16

8

3

結(jié)合圖表完成下列問題:

(1)a=   ;

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)寫出全班人數(shù)是   ,并求出第三組“120≤x<140”的頻率(精確到0.01)

(4)若跳繩次數(shù)不少于140的學(xué)生成績?yōu)閮?yōu)秀,則優(yōu)秀學(xué)生人數(shù)占全班總?cè)藬?shù)的百分之幾?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,.分別以點,為圓心,大于長為半徑畫弧,兩弧交于點,作射線于點,交于點.若點的中點,的周長為8,則的長為(

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的口袋里裝有分別標(biāo)有漢字”、“”、“”、“的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻.

(1)若從中任取一個球,球上的漢字剛好是的概率為__________.

(2)從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表的方法,求取出的兩個球上的漢字能組成歷城的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD繞點C順時針旋轉(zhuǎn)90°得到矩形FGCE,點M、N分別是BD、GE的中點,若BC=14,CE=2,則MN的長( 。

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高產(chǎn)品的附加值,某公司計劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進(jìn)行精加工后再投放市場.現(xiàn)有甲、乙兩個工廠都具備加工能力,公司派出相關(guān)人員分別到這兩個工廠了解情況,獲得如下信息:

信息一:甲工廠單獨加工完成這批產(chǎn)品比乙工廠單獨加工完成這批產(chǎn)品多用10天;

信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.

根據(jù)以上信息,求甲、乙兩個工廠每天分別能加工多少件新產(chǎn)品.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知二次函數(shù)y=mx2+3mx﹣m的圖象與x軸交于A,B兩點(點A在點B的左側(cè)),頂點D和點B關(guān)于過點A的直線l:y=﹣x﹣對稱.

(1)求A、B兩點的坐標(biāo)及二次函數(shù)解析式;

(2)如圖2,作直線AD,過點BAD的平行線交直線1于點E,若點P是直線AD上的一動點,點Q是直線AE上的一動點.連接DQ、QP、PE,試求DQ+QP+PE的最小值;若不存在,請說明理由:

(3)將二次函數(shù)圖象向右平移個單位,再向上平移3個單位,平移后的二次函數(shù)圖象上存在一點M,其橫坐標(biāo)為3,在y軸上是否存在點F,使得∠MAF=45°?若存在,請求出點F坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,AGDBCB的延長線于G.

(1)求證:四邊形AGBD為平行四邊形;

(2)若四邊形AGBD是矩形,則四邊形BEDF是什么特殊四邊形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著科技進(jìn)步,無人機(jī)的應(yīng)用越來越廣,如圖1,在某一時刻,無人機(jī)上的探測器顯示,從無人機(jī)A處看一棟樓頂部B點的仰角和看與頂部B在同一鉛垂線上高樓的底部C的俯角.

(1)如果上述仰角與俯角分別為30°60°,且該樓的高度為30米,求該時刻無人機(jī)的豎直高度CD;

(2)如圖2,如果上述仰角與俯角分別為αβ,且該樓的高度為m米.求用α、β、m表示該時刻無人機(jī)的豎直高度CD.

查看答案和解析>>

同步練習(xí)冊答案