如圖,P為正方形ABCD的邊AD上的一個動點,AE⊥BP,CF⊥BP,垂足分別為點E、F,已知AD=4.
(1)試說明AE2+CF2的值是一個常數(shù);
(2)過點P作PM∥FC交CD于點M,點P在何位置時線段DM最長,并求出此時DM的值.
考點:
正方形的性質(zhì);二次函數(shù)的最值;全等三角形的判定與性質(zhì);勾股定理;相似三角形的判定與性質(zhì).
分析:
(1)由已知∠AEB=∠BFC=90°,AB=BC,結合∠ABE=∠BCF,證明△ABE≌△BCF,可得AE=BF,于是AE2+CF2=BF2+CF2=BC2=16為常數(shù);
(2)設AP=x,則PD=4﹣x,由已知∠DPM=∠PAE=∠ABP,△PDM∽△BAP,列出關于x的一元二次函數(shù),求出DM的最大值.
解答:
解:(1)由已知∠AEB=∠BFC=90°,AB=BC,
又∵∠ABE+∠FBC=∠BCF+∠FBC,
∴∠ABE=∠BCF,
∵在△ABE和△BCF中,
,
∴△ABE≌△BCF(AAS),
∴AE=BF,
∴AE2+CF2=BF2+CF2=BC2=16為常數(shù);
(2)設AP=x,則PD=4﹣x,
由已知∠DPM=∠PAE=∠ABP,
∴△PDM∽△BAP,
∴=,
即=,
∴DM==x﹣x2,
當x=2時,DM有最大值為1.
點評:
本題主要考查正方形的性質(zhì)等知識點,解答本題的關鍵是熟練掌握全等三角形的判定定理以及三角形相似等知識,此題有一定的難度,是一道不錯的中考試題.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
5 |
2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
10 |
2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com