【題目】2019年春季,莒縣某服裝商店分兩次從批發(fā)市場購進(jìn)同一款服裝,數(shù)量之比是23,且第一、二次進(jìn)貨價分別為每件50元、40元,總共付了6600元的貨款.

1)求第一、二次購進(jìn)服裝的數(shù)量分別是多少件?

2)由于該款服裝剛推出時,很受歡迎,按每件60元銷售了x件;后來,由于該服裝滯銷,為了及時處理庫存,緩解資金壓力,其剩余部分的按每件30元全部售完.當(dāng)x的值至少為多少時,該服裝商店才不會虧本.

【答案】1)第一、二次購進(jìn)服裝的數(shù)量分別為60件與90.2)當(dāng)x的值至少為70時,該服裝商店才不會虧本

【解析】

1)設(shè)第一、二次購進(jìn)服裝的數(shù)量分別為a件與b件,根據(jù)題意列出方程組,求出方程組的解得到ab的值,即可得到結(jié)果;

2)根據(jù)題意列出不等式,求出不等式的解集即可得到結(jié)果.

解:設(shè)第一、二次購進(jìn)服裝的數(shù)量分別為a件與b件,由題意可得:

解得:

答:第一、二次購進(jìn)服裝的數(shù)量分別為60件與90.

2)根據(jù)題意可得:

解得:;

答:當(dāng)x的值至少為70時,該服裝商店才不會虧本.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有長為24m的籬笆,一面利用墻(墻的最大可用長度a10m),圍成中間隔有一道籬笆的長方形花圃.設(shè)花圃的寬ABxm,面積為Sm2

1)求Sx的函數(shù)關(guān)系式;

2)如果要圍成面積為45m2的花圃,AB的長是多少米?

3)能圍成面積比45 m2更大的花圃嗎?如果能,請求出最大面積,并說明圍法;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已矩形ABCD的頂點(diǎn)A、D分別在x軸、y軸上,,則C點(diǎn)坐標(biāo)為(

A. B. C. 3,5D. 4,7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABD△GDF都是等腰直角三角形,BDDF均為斜邊(BD<DF).

(1)如圖1,B,D,F(xiàn)在同一直線上,過FMF⊥GF于點(diǎn)F,取MF=AB,連結(jié)AMBF于點(diǎn)H,連結(jié)GA,GM.

求證:AH=HM;

請判斷△GAM的形狀,并給予證明;

請用等式表示線段AM,BD,DF的數(shù)量關(guān)系,并說明理由.

(2)如圖2,GD⊥BD,連結(jié)BF,取BF的中點(diǎn)H,連結(jié)AH并延長交DF于點(diǎn)M,請用等式直接寫出線段AM,BD,DF的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,、、分別是菱形ABCD的兩條對角線長和邊長,這時我們把關(guān)于的形如的一元二次方程稱為菱系一元二次方程.請解決下列問題:

1)填空:當(dāng),時,

用含,的代數(shù)式表示值,

2)求證:關(guān)于菱系一元二次方程必有實(shí)數(shù)根;

3)若菱系一元二次方程的一個根,且菱形的面積是25BE是菱形ABCDAD邊上的高,求BE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,則下列結(jié)論:

其中正確的個數(shù)是( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】運(yùn)用所學(xué)知識計算三角函數(shù)值:tan22.5°=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線yax2+ca≠0)與x軸交于點(diǎn)A和點(diǎn)B,0),與y軸交于點(diǎn)C0,2),點(diǎn)P2,t)是該拋物線上一點(diǎn).

1)求此拋物線的解析式及t的值;

2)若點(diǎn)Dy軸上一點(diǎn),線段PD繞點(diǎn)D逆時針旋轉(zhuǎn)90°后,點(diǎn)P的對應(yīng)點(diǎn)P恰好也落在此拋物線上,求點(diǎn)D的坐標(biāo);

3)如圖2,直線lykx+b交該拋物線于M、N兩點(diǎn),且滿足MCNC,設(shè)點(diǎn)P到直線l的距離是d,求d的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,先將一張邊長為4的正方形紙片ABCD沿著MN對折,然后,分別將C、D沿著折痕BFAE對折,使得C、D兩點(diǎn)都落在折痕MN上的點(diǎn)O處,則的值為(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案