【題目】如圖所示,MP和NQ分別垂直平分AB和AC.
(1)若△APQ的周長為12,求BC的長;
(2)∠BAC=105°,求∠PAQ的度數(shù).
【答案】(1)12; (2)30°
【解析】試題分析:
(1)根據(jù)線段的垂直平分線的性質(zhì)證PA=PB,QA=AC.
(2)結(jié)合等腰三角形的性質(zhì)和三角形的內(nèi)角和定理求解.
試題解析:
(1)∵MP和NQ分別垂直平分AB和AC,∴AP=BP,AQ=CQ.
∴△APQ的周長為AP+PQ+AQ=BP+PQ+CQ=BC.
∵△APQ的周長為12,
∴BC=12.
(2)∵AP=BP,AQ=CQ,
∴∠B=∠BAP,∠C=∠CAQ.
∵∠BAC=105°,
∴∠BAP+∠CAQ=∠B+∠C=180°-∠BAC=180°-105°=75°.
∴∠PAQ=∠BAC-(∠BAP+∠CAQ)=105°-75°=30°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,DE垂直平分AB,交BC于點D,連接AD,若AC=8,DC:AD=3:5.求:
(1)CD的長;
(2)DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊三角形ABC的邊長為3,過AB邊上一點P作PEAC于點E,Q為BC延長線上一點,取PA=CQ,連接PQ,交AC于M,則EM的長為_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為等邊三角形,AE=CD,AD,BE相交于點P,BQ⊥AD于Q,PQ=3,PE=1.
(1)求證:BE=AD;
(2)求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長方形ABCD沿著對角線BD折疊,使點C落在C′處,BC′交AD于點E.
(1)試判斷△BDE的形狀,并說明理由;
(2)若AB=3,AD=9,求△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點A,C分別在x軸和y軸上,點B的坐標為(4,6).雙曲線y=(x>0)的圖象經(jīng)過BC的中點D,且與AB交于點E,連接DE.
(1)求k的值及點E的坐標;
(2)若點F是邊上一點,且△BCF∽△EBD,求直線FB的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com