【題目】如圖,在平面直角坐標(biāo)系中,已知AB分別是x軸上位于原點(diǎn)左右兩側(cè)的點(diǎn),點(diǎn)P在第一象限,且它的縱坐標(biāo)為3,直線(xiàn)APy軸于點(diǎn)C(0,2),直線(xiàn)PBy軸于點(diǎn)D,且ΔAOP的面積為6.

(1)求直線(xiàn)AP的關(guān)系式;

(2)ΔBOPΔAOP的面積相等,求ΔBOD的面積.

【答案】1)直線(xiàn)AP的關(guān)系式為y= 212

【解析】

1)先根據(jù)ΔAOP的面積為6, 點(diǎn)P的縱坐標(biāo)為3求出A點(diǎn)的坐標(biāo),再用待定系數(shù)法求出直線(xiàn)AP的關(guān)系式即可.

2ΔBOPΔAOP的面積相等,則OA=OB,可求出B點(diǎn)坐標(biāo),根據(jù)直線(xiàn)AP的關(guān)系式和P點(diǎn)的縱坐標(biāo)可確定P點(diǎn)的坐標(biāo),用待定系數(shù)法求出直線(xiàn)BD的解析式,進(jìn)而確定D點(diǎn)坐標(biāo),最后求ΔBOD的面積.

1)根據(jù)題意得:

OA=4

A點(diǎn)坐標(biāo)為(-4,0

設(shè)直線(xiàn)AP的關(guān)系式為y=kx+b,代入A-4,0C(02)得:

解得

∴直線(xiàn)AP的關(guān)系式為y=

2)若ΔBOPΔAOP的面積相等,

OA=OB,故B的坐標(biāo)為(4,0

y=3代入y=得:x=2

P點(diǎn)的坐標(biāo)為(2,3

設(shè)直線(xiàn)BD的解析式為y=mx+n,B4,0),P2,3)代入得:

解得

故直線(xiàn)BD的解析式為y=

D點(diǎn)的坐標(biāo)為(0,6

ΔBOD的面積=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E是矩形ABCD的邊BC的中點(diǎn),連接DEAC于點(diǎn)F

如圖,求證:;

如圖,作G,試探究:當(dāng)ABAD滿(mǎn)足什么關(guān)系時(shí),使得成立?并證明你的結(jié)論;

如圖,以DE為斜邊在矩形ABCD內(nèi)部作等腰,交對(duì)角線(xiàn)BDN,連接AM,若,請(qǐng)直接寫(xiě)出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某機(jī)動(dòng)車(chē)出發(fā)前油箱內(nèi)有42升油,行駛?cè)舾尚r(shí)后,途中在加油站加油若干升,油箱中余油量Q()與行駛時(shí)間t(時(shí))之間的函數(shù)關(guān)系如圖,回答下列問(wèn)題(1)機(jī)動(dòng)車(chē)行駛________小時(shí)后加油,中途加油_______升;(2)求加油前油箱剩余油量Q與行駛時(shí)間t的函數(shù)關(guān)系,并直接寫(xiě)出自變量t的取值范圍;(3)如果加油站距目的地還有230千米,車(chē)速為40千米/時(shí),要到達(dá)目的地,油箱中的油是否夠用?請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩車(chē)從A地駛向B地,并以各自的速度勻速行駛,甲車(chē)比乙車(chē)早行駛2h,并且甲車(chē)途中休息了0.5h,如圖是甲乙兩車(chē)行駛的距離y(km)與時(shí)間x(h)的函數(shù)圖象.

(1)直接寫(xiě)出圖中ma的值;

(2)求出甲車(chē)行駛路程y(km)與時(shí)間x (h)的函數(shù)解析式,并寫(xiě)出相應(yīng)的x的取值范圍;

(3)當(dāng)乙車(chē)出發(fā)多長(zhǎng)時(shí)間后,兩車(chē)恰好相距40km?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,DBDA,ADB的平分線(xiàn)交AB于點(diǎn)F,交CB的延長(zhǎng)線(xiàn)于點(diǎn)E,連接AE.

(1)求證:四邊形AEBD是菱形;

(2)DC,EFBF3,求菱形AEBD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)y=kx+b(k≠0)的圖象過(guò)點(diǎn)(0,2),且與兩坐標(biāo)軸圍成的三角形面積為2,求此一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點(diǎn)F,過(guò)點(diǎn)E作直線(xiàn)EP與CD的延長(zhǎng)線(xiàn)交于點(diǎn)P,使∠PED=∠C.

(1)求證:PE是⊙O的切線(xiàn);

(2)求證:ED平分∠BEP;

(3)若⊙O的半徑為5,CF=2EF,求PD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c所表示的數(shù)在數(shù)軸上的位置如圖所示:

1)化簡(jiǎn):a-1│-c+b│+│b-1│;

2)若a+b+c=0,b-1的距離和c-1的距離相等,求:-a2+2b-c-(a-4c-b)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某天然氣公司的主輸氣管道從A市的北偏東60°方向直線(xiàn)延伸,測(cè)繪員在A處測(cè)得要安裝天然氣的M小區(qū)在A市的北偏東30°方向,測(cè)繪員沿主輸氣管道步行1000米到達(dá)C處,測(cè)得小區(qū)M位于點(diǎn)C的北偏西75°方向,試在主輸氣管道AC上尋找支管道連接點(diǎn)N,使其到該小區(qū)鋪設(shè)的管道最短,并求AN的長(zhǎng).(精確到1米,≈1.414,≈1.732)

查看答案和解析>>

同步練習(xí)冊(cè)答案