【題目】如圖,AB為等腰直角ABC的斜邊(AB為定長(zhǎng)線段),EAB的中點(diǎn),FAC延長(zhǎng)線上的一個(gè)動(dòng)點(diǎn),線段FB的垂直平分線交線段CE于點(diǎn)O,D為垂足,當(dāng)F點(diǎn)運(yùn)動(dòng)時(shí),給出下列四個(gè)結(jié)論,其中一定正確的結(jié)論有_____(請(qǐng)?zhí)顚懻_序號(hào))

OABF的外心;②OFOB;③CE+FCAB;④FCOBOEFB

【答案】①②④

【解析】

①只要證明OA=OB=OF即可.②利用“8字型證明∠FCJ=JOB=90°即可.③先證明 EC+CF=AF,再判斷.④正確.證明OEB∽△FCB即可.

如圖,連接AO

CACBAEEB,

CEAB

OAOB,

OD垂直平分線段BF

OFOB,

OAOFOB,

∴點(diǎn)OABF的外心,故①正確,

設(shè)BCOFJ

ACBC,COCO,AOBO,

∴△ACO≌△BCOSSS),

∴∠CAO=∠CBO,

OAOF,

∴∠CAO=∠CFJ,

∴∠CFJ=∠OBJ,

∵∠CJF=∠OJB

∴∠JOB=∠JCF90°,

OFOB,故②正確,

CEAC,AC+CFAF

顯然AF不一定等于AB,故③錯(cuò)誤.

∵∠EBC=∠OBF45°

∴∠EBO=∠CBF,

∵∠OEB=∠FCB90°,

∴△OEB∽△FCB,

FCOBOEFB,故④正確,

故答案為:①②④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年國(guó)務(wù)院機(jī)構(gòu)改革不再保留國(guó)家衛(wèi)生和計(jì)劃生育委員會(huì),組建國(guó)家衛(wèi)生健康委員會(huì),在修正人口普查數(shù)據(jù)中的低齡人口漏登后,我們估計(jì)了1982-2030年育齡婦女情況.1982年中國(guó)15-49歲育齡婦女規(guī)模為2.5億,到2011年達(dá)3.8億人的峰值,2017年降至3.5億,預(yù)計(jì)到2030年將降至3.0.則數(shù)據(jù)2.5億、3.8億、3.5億、3.0億的中位數(shù)、平均數(shù)、方差分別是( )

A.3.25億、3.2億、0.245B.3.65億、3.2億、0.98

C.3.25億、3.2億、0.98D.3.65億、3億、0.245

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某花店每天以每枝5元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售.如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.

1)若花店一天購(gòu)進(jìn)16枝玫瑰花,求當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天需求量(單位:枝,是自然數(shù))的函數(shù)解析式;

2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

①這100個(gè)日需求量所組成的一組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是________________;

②以100天記錄的各需求量的頻率作為計(jì)算平均一天需求量對(duì)應(yīng)的權(quán)重.若花店計(jì)劃一天購(gòu)進(jìn)16枝或17枝玫瑰花,從盈利的角度分析,你認(rèn)為應(yīng)購(gòu)進(jìn)16枝還是17枝?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系xOy中,拋物線與直線y相交于點(diǎn)A1A2,將拋物線y1向右平移后得拋物線y2,y2與直線yx交于點(diǎn)A2,A3,再將拋物線y2繼續(xù)向右平移得拋物線y3,y3與直線yx交于點(diǎn)A3,A4……依此類推,請(qǐng)回答以下問題:

1)求點(diǎn)A1,點(diǎn)A2的坐標(biāo).

2)求拋物線y2的解析式.

3)求AnAn+1的長(zhǎng)(用含n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】自2016年國(guó)慶后,許多高校均投放了使用手機(jī)就可隨用的共享單車.某運(yùn)營(yíng)商為提高其經(jīng)營(yíng)的A品牌共享單車的市場(chǎng)占有率,準(zhǔn)備對(duì)收費(fèi)作如下調(diào)整:一天中,同一個(gè)人第一次使用的車費(fèi)按0.5元收取,每增加一次,當(dāng)次車費(fèi)就比上次車費(fèi)減少0.1元,第6次開始,當(dāng)次用車免費(fèi).具體收費(fèi)標(biāo)準(zhǔn)如下:

使用次數(shù)

0

1

2

3

4

5(含5次以上)

累計(jì)車費(fèi)

0

0.5

0.9

1.5

同時(shí),就此收費(fèi)方案隨機(jī)調(diào)查了某高校100名師生在一天中使用A品牌共享單車的意愿,得到如下數(shù)據(jù):

使用次數(shù)

0

1

2

3

4

5

人數(shù)

5

15

10

30

25

15

)寫出的值;

)已知該校有5000名師生,且A品牌共享單車投放該校一天的費(fèi)用為5800元.試估計(jì):收費(fèi)調(diào)整后,此運(yùn)營(yíng)商在該校投放A品牌共享單車能否獲利? 說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公園要修建一個(gè)截面拋物線形的拱門,其最大高度為4.5m,寬度OP6米,現(xiàn)以地面(OP所在的直線)為x軸建立平面直角坐標(biāo)系(如圖1所示)

1)求這條拋物線的函數(shù)表達(dá)式;

2)如圖所示,公園想在拋物線拱門距地面3米處釘兩個(gè)釘子以便拉一條橫幅,請(qǐng)計(jì)算該橫幅的寬度為多少米?

3)為修建該拱門,施工隊(duì)需搭建一個(gè)矩形支架ABCD(由四根木桿ABBCCDDA組成),使BC兩點(diǎn)在拋物線上.A,D兩點(diǎn)在地面OP上(如圖2所示),請(qǐng)你幫施工隊(duì)計(jì)算一下最多需要準(zhǔn)備多少米該種木桿?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,m,n是一元二次方程x2+4x+3=0的兩個(gè)實(shí)數(shù)根,且|m|<|n|,拋物線y=x2+bx+c的圖象經(jīng)過點(diǎn)Am,0),B(0,n),如圖所示.

(1)求這個(gè)拋物線的解析式;

(2)設(shè)(1)中的拋物線與x軸的另一個(gè)交點(diǎn)為拋物線的頂點(diǎn)為D,求出點(diǎn)C,D的坐標(biāo),并判斷BCD的形狀;

(3)點(diǎn)P是直線BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B和點(diǎn)C重合),過點(diǎn)Px軸的垂線,交拋物線于點(diǎn)M,點(diǎn)Q在直線BC上,距離點(diǎn)P個(gè)單位長(zhǎng)度,設(shè)點(diǎn)P的橫坐標(biāo)為t,PMQ的面積為S,求出St之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了美化城市環(huán)境,某街道重修了路面,準(zhǔn)備將老舊的路燈換成LED太陽(yáng)能路燈,計(jì)劃購(gòu)買海螺臂和A字臂兩種型號(hào)的太陽(yáng)能路燈共100只,經(jīng)過市場(chǎng)調(diào)查:購(gòu)買海螺臂太陽(yáng)能路燈1只,A字臂太陽(yáng)能路燈2只共需2300元;購(gòu)買海螺臂太陽(yáng)能路燈3只,A字臂太陽(yáng)能路燈4只共需5400元.

1)求海螺臂太陽(yáng)能路燈和A字臂太陽(yáng)能路燈的單價(jià):

2)在實(shí)際購(gòu)買時(shí),恰逢商家活動(dòng),購(gòu)買海螺臂太陽(yáng)能路燈超過20只時(shí),超過的部分打九折優(yōu)惠,A字臂太陽(yáng)能路燈全部打八折優(yōu)惠;若規(guī)定購(gòu)買的海螺臂太陽(yáng)能路燈的數(shù)量不少于A字臂太陽(yáng)能路燈的數(shù)量的一半,請(qǐng)你設(shè)計(jì)一種購(gòu)買方案,使得總費(fèi)用最少,并求出最小總費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)是A(﹣2,3),B(﹣4,﹣1), C(2,0).點(diǎn)P(m,n)為△ABC內(nèi)一點(diǎn),平移△ABC得到△A1B1C1 ,使點(diǎn)P(m,n)移到P(m+6,n+1)處.

(1)畫出△A1B1C1

(2)將△ABC繞坐標(biāo)點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到△A2B2C,畫出△A2B2C;

(3)在(2)的條件下求BC掃過的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案