如圖,直線y=x+與x軸、y軸分別相交于A、B兩點(diǎn),圓心P的坐標(biāo)為(1,0),⊙P與y軸相切于點(diǎn)O.若將⊙P沿x軸向左移動(dòng),當(dāng)⊙P與該直線相交時(shí),滿足橫坐標(biāo)為整數(shù)的點(diǎn)P的個(gè)數(shù)是( )
A.3 B.4 C.5 D.6
A
【解析】
試題分析:根據(jù)直線與坐標(biāo)軸的交點(diǎn),得出A,B的坐標(biāo),再利用三角形相似得出圓與直線相切時(shí)的坐標(biāo),進(jìn)而得出相交時(shí)的坐標(biāo).
∵直線y=x+與x軸、y軸分別相交于A、B兩點(diǎn),圓心P的坐標(biāo)為(1,0),
∴A點(diǎn)的坐標(biāo)為0=x+
x=-3,A(-3,0),
B點(diǎn)的坐標(biāo)為:(0,),
∴AB=2
將圓P沿x軸向左移動(dòng),當(dāng)圓P與該直線相切于C1時(shí),P1C1=1,
根據(jù)△AP1C1∽△ABO,
∴AP1=2,
∴P1的坐標(biāo)為:(-1,0),
將圓P沿x軸向左移動(dòng),當(dāng)圓P與該直線相切于C2時(shí),P2C2=1,
根據(jù)△AP2C2∽△ABO,
∴AP2=2,
P2的坐標(biāo)為:(-5,0),
從-1到-5,整數(shù)點(diǎn)有-2,-3,-4,故橫坐標(biāo)為整數(shù)的點(diǎn)P的個(gè)數(shù)是3個(gè).
故選A.
考點(diǎn):直線與坐標(biāo)軸的求法,相似三角形的判定
點(diǎn)評(píng):本題綜合性較強(qiáng),難度較大,在中考中比較常見(jiàn),注意特殊點(diǎn)的求法是解決問(wèn)題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,直線y=0.25x與雙曲線y=相交于A、B兩點(diǎn),BC⊥x軸于點(diǎn)C(-4,0)。
(1)求A、B兩點(diǎn)的坐標(biāo)及雙曲線的解析式;
(2)若經(jīng)過(guò)點(diǎn)A的直線與x軸的正半軸交于點(diǎn)D,與y軸的正半軸交于點(diǎn)E,且△AOE的面積為10,求CD的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇泰興實(shí)驗(yàn)初級(jí)中學(xué)八年級(jí)上期末考試數(shù)學(xué)試卷(帶解析) 題型:填空題
如圖,直線y1=kx+b與直線y2=mx+n相交于點(diǎn)(2,-1),則不等式kx+b<mx+n的解集為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013屆江蘇省無(wú)錫市八士中學(xué)九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:單選題
如圖,直線y=x+與x軸、y軸分別相交于A、B兩點(diǎn),圓心P的坐標(biāo)為(1,0),⊙P與y軸相切于點(diǎn)O.若將⊙P沿x軸向左移動(dòng),當(dāng)⊙P與該直線相交時(shí),滿足橫坐標(biāo)為整數(shù)的點(diǎn)P的個(gè)數(shù)是( )
A.3 B.4 C.5 D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇泰興實(shí)驗(yàn)初級(jí)中學(xué)八年級(jí)上期末考試數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,直線y1=kx+b與直線y2=mx+n相交于點(diǎn)(2,-1),則不等式kx+b<mx+n的解集為___________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com