【題目】已知:如圖,拋物線x軸于A(-2,0),B3,0)兩點,交y軸于點C0,6).

1)寫出ab,c的值;

2)連接BC,點P為第一象限拋物線上一點,過點AADx軸,過點PPDBC于交直線AD于點D,設點P的橫坐標為t,AD長為h

①求ht的函數(shù)關系式和h的最大值(請求出自變量t的取值范圍);

②過第二象限點DDEABBC于點E,若DP=CE,時,求點P的坐標.

【答案】1a=-1,b1c6;(2)①,當時,h有最大值為 ,當t<3時,無最大值,②符合條件的點P的坐標為(2,4).

【解析】

1)根據(jù)待定系數(shù)法求解;(2)①如圖,過點PPGx于點G,過點DDKx軸交PG于點K,根據(jù)三角函數(shù)值和矩形性質(zhì)得,再求最值;②如圖,過點PPHADAD的延長線于點H,根據(jù)全等三角形判定和性質(zhì),△PHD≌△CNEAAS),PH=CN=OCON,根據(jù)矩形性質(zhì),t2=,解得,(舍去),把t=2代入拋物線,可求點P2,4).當點D在第三象限時,不存在點P滿足DP=CE.故符合條件的點P的坐標為(2,4).

1)根據(jù)題意得

所以,a=-1,b1c6;

2)①如圖,過點PPGx于點G,過點DDKx軸交PG于點K,

PDBC,DKy軸,∠BCO=PDK,OB=3,OC=6,

tanBCO=tanPDK=DK=t2,PK=DK=

DKAB,ADAB,∴四邊形ADKG為矩形,

AD=KG,

h=AD=KG=|PGPK|=

,,(不合題意,舍去)

0t≤時,

∴當時,h有最大值為

t<3時,無最大值.

②如圖,過點PPHADAD的延長線于點H

PDBC,∴∠PHD=ECE=90°-∠CMH

在△PHD與△CNE中,

,

∴△PHD≌△CNEAAS),

PH=CN=OCON,

∵四邊形ADNO為矩形,

CN==,PH=t2,

t2=,

解得,(舍去),

t=2代入拋物線,∴點P2,4).

當點D在第三象限時,不存在點P滿足DP=CE

∴符合條件的點P的坐標為(2,4).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+x+6及一次函數(shù)y=﹣x+m,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新函數(shù)(如圖所示),請你在圖中畫出這個新圖象,當直線y=﹣x+m與新圖象有4個交點時,m的取值范圍是(  )

A. <m<3 B. <m<2 C. ﹣2<m<3 D. ﹣6<m<﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,CA=CB,∠C=90°,點DBC的中點,將ABC沿著直線EF折疊,使點A與點D重合,折痕交AB于點E,交AC于點F,那么sinBED的值為( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等邊△ABC邊長為1,D是△ABC外一點且∠BDC=120°,BD=CD,∠MDN=60°求△AMN的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知E,F(xiàn)分別為正方形ABCD的邊AB,BC的中點,AFDE交于點M,OBD的中點,則下列結論:

①∠AME=90°;②∠BAF=EDB;③∠BMO=90°;MD=2AM=4EM;AM=MF.其中正確結論的是(  )

A. ①③④ B. ②④⑤ C. ①③④⑤ D. ①③⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下表顯示了同學們用計算機模擬隨機投針實驗的某次實驗的結果.

投針次數(shù)n

1000

2000

3000

4000

5000

10000

20000

針與直線相交的次數(shù)m

454

970

1430

1912

2386

4769

9548

針與直線相交的頻率p

0.454

0.485

0.4767

0.478

0.4772

0.4769

0.4774

下面有三個推斷:

①投擲1000次時,針與直線相交的次數(shù)是454,針與直線相交的概率是0.454;

②隨著實驗次數(shù)的增加,針與直線相交的頻率總在0.477附近,顯示出一定的穩(wěn)定性,可以估計針與直線相交的概率是0.477;

③若再次用計算機模擬此實驗,則當投擲次數(shù)為10000時,針與直線相交的頻率一定是0.4769

其中合理的推斷的序號是:_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB=AC,AD=AE,DE=BC,且BAD=∠CAE

1)求證:ABE≌△ACD;

2)判斷四邊形BCDE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,如果一個矩形的寬與長之比為,那么這個矩形就稱為黃金矩形.如圖,已知A、B兩點都在反比例函數(shù)yk0)位于第一象限內(nèi)的圖像上,過A、B兩點分別作坐標軸的垂線,垂足分別為C、DE、F,設ACBF交于點G,已知四邊形OCADCEBG都是正方形FG、OC的中點分別為P、Q,連接PQ.給出以下結論:①四邊形ADFG為黃金矩形;②四邊形OCGF為黃金矩形;③四邊形OQPF為黃金矩形.以上結論中,正確的是(

A. B. C. ②③D. ①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,高度相同的兩根電線桿AB、CD均垂直于地面AF,某時刻電線桿AB的影子為地面上的線段AE,電線桿CD的影子為地面上的線段CF和坡面上的線段FG.已知坡面FG的坡比i=10.75,又AE=6米,CF=1米,FG=5米,那么電線桿AB的高度為______米.

查看答案和解析>>

同步練習冊答案