已知正方形ABCD的邊長為2,點(diǎn)P是BC上的一點(diǎn),將△DCP沿DP折疊至△DPQ,若DQ,DP恰好與如圖所示的以正方形ABCD的中心O為圓心的⊙O相切,則折痕DP的長為( 。
分析:首先連接OD,由正方形的性質(zhì),切線長定理與折疊的性質(zhì),易求得∠CDP=∠PDQ=∠ADQ=
1
3
∠ADC=30°,然后由勾股定理,易求得CP的長,繼而可求得答案.
解答:解:連接OD,
∵O為正方形ABCD的中心,
∴∠ADO=∠CDO,
又∵DQ與DP都為圓O的切線,
∴DO平分∠PDQ,即∠PDO=∠QDO,
∴∠ADO-∠QDO=∠CDO-∠PDO,即∠ADQ=∠CDP,
又∵將△DCP沿DP折疊至△DPQ,
∴∠CDP=∠PDQ,
∴∠CDP=∠PDQ=∠ADQ=
1
3
∠ADC=30°,
在Rt△PCD中,設(shè)CP=x,則DP=2x,CD=2,
根據(jù)勾股定理得:DP2=CD2+CP2,即4x2=x2+22,
解得:x=
2
3
3

∴DP=2x=
4
3
3

故選B.
點(diǎn)評:此題考查了切線的性質(zhì)、正方形的性質(zhì)、折疊的性質(zhì)以及勾股定理.此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD的邊長為12cm,E為CD邊上一點(diǎn),DE=5cm.以點(diǎn)A為中心,將△ADE按順時(shí)針方向旋轉(zhuǎn)得△ABF,則點(diǎn)E所經(jīng)過的路徑長為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長為6,以D為圓心,DA為半徑在正方形內(nèi)作弧AC,E是AB邊上動(dòng)點(diǎn)(與點(diǎn)A、B不重精英家教網(wǎng)合),過點(diǎn)E作弧AC的切線,交BC于點(diǎn)F,G為切點(diǎn),⊙O是△EBF的內(nèi)切圓,分別切EB、BF、FE于點(diǎn)P、J、H
(1)求證:△ADE∽△PEO;
(2)設(shè)AE=x,⊙O的半徑為y,求y關(guān)于x的解析式,并寫出定義域;
(3)當(dāng)⊙O的半徑為1時(shí),求CF的長;
(4)當(dāng)點(diǎn)E在移動(dòng)時(shí),圖中哪些線段與線段EP始終保持相等,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•同安區(qū)質(zhì)檢)如圖,已知正方形ABCD的邊長是2,E是AB的中點(diǎn),延長BC到點(diǎn)F使CF=AE.
(1)求證:△ADE≌△CDF;
(2)現(xiàn)把△DCF向左平移,使DC與AB重合,得△ABH,AH交ED于點(diǎn)G.求AG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•香洲區(qū)一模)如圖,已知正方形ABCD的邊長為28,動(dòng)點(diǎn)P從A開始在線段AD上以每秒3個(gè)單位長度的速度向點(diǎn)D運(yùn)動(dòng)(點(diǎn)P到達(dá)點(diǎn)D時(shí)終止運(yùn)動(dòng)),動(dòng)直線EF從AD開始以每秒1個(gè)單位長度的速度向下平行移動(dòng)(即EF∥AD),并且分別與DC、AC交于E、F兩點(diǎn),連接FP,設(shè)動(dòng)點(diǎn)P與動(dòng)直線EF同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t 秒.
(1)t為何值時(shí),梯形DPFE的面積最大?最大面積是多少?
(2)當(dāng)梯形DPFE的面積等于△APF的面積時(shí),求線段PF的長.
(3)△DPF能否為一個(gè)等腰三角形?若能,試求出所有的t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD的邊長為8cm,點(diǎn)E、F分別在邊BC、CD上,∠EAF=45°.當(dāng)EF=8cm時(shí),△AEF的面積是
32
32
cm2;當(dāng)EF=7cm時(shí),△EFC的面積是
8
8
cm2

查看答案和解析>>

同步練習(xí)冊答案