【題目】甲、乙兩位采購員同時去一家飼料公司買兩次飼料,兩次飼料的價格有變化,兩位采購員的購貨方式也不同,其中,甲每次購買1000千克,乙每次用去800元,而不管購買多少飼料,購買的飼料單價分別為m元/千克和n元/千克,

1)甲、乙所購飼料的平均單價各是多少?

2)誰的購貨方式更合算?

【答案】1,;(2)乙的購貨方式更合算,理由見詳解.

【解析】

1)根據(jù)平均單價求出甲、乙所購飼料的平均單價即可;
2)根據(jù)作差法比較兩單價的大小即可.

解:(1)∵兩次購買的飼料單價分別為m/千克和n/千克(m,n是正數(shù),且m≠n),
∴甲兩次購買飼料的平均單價為(元/千克),
乙兩次購買飼料的平均單價為(元/千克);

2)甲、乙兩種飼料的平均單價的差是:

由于m、n是正數(shù),因為m≠n時,也是正數(shù),

因此乙的購貨方式更合算.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將兩塊直角三角尺的頂點疊放在一起.

1)若∠DCE25°,求∠ACB的度數(shù).

2)若∠ACB140°,求∠DCE的度數(shù).

3)猜想∠ACB與∠DCE的關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,點MA點出發(fā)在線段AB上作勻速運動(不與A、B重合),同時點NB點出發(fā)在線段BC上作勻速運動.

(1)如圖1,若MAB中點,且DMMN.請在圖中找出兩對相似三角形:

      _,      ,選擇其中一對加以證明;

(2)①如圖2,若AB=5,BC=3M的速度為1個單位長度/秒,點N的速度為個單位長度/秒,運動的時間為t秒.當t為何值時,DAMMBN相似?請說明理由;

②如果把點N的速度改為a個單位長度/秒,其它條件不變,是否存在a的值,使得DAMMBNDCN這兩個三角形都相似?若存在,請求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,P為△ABC所在平面上一點,且∠APBBPCCPA120°,則點P叫作△ABC的費馬點.

(1)如果點P為銳角△ABC的費馬點,且∠ABC60°.

①求證: ABP∽△BCP;

②若PA3PC4,求PB的長;

(2)如圖②,已知銳角△ABC,分別以AB,AC為邊向外作正△ABE和正△ACDCEBD相交于點P,連接AP.

①求∠CPD的度數(shù);

②求證:點P為△ABC的費馬點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列說法:

①若a+b+c=0,則b2﹣4ac>0;

②若方程兩根為﹣12,則2a+c=0;

③若方程ax2+c=0有兩個不相等的實根,則方程ax2+bx+c=0必有兩個不相等的實根;

④若b=2a+c,則方程有兩個不相等的實根.其中正確的有(  )

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面兩個多位數(shù)1248624…… ,6248624…… ,都是按照如下方法得到的:將第一位數(shù)字乘以2,若積為一位數(shù),將其寫在第2位上,若積為兩位數(shù),則將其個位數(shù)字寫在第2位.對第2位數(shù)字再進行如上操作得到第3位數(shù)字……,后面的每一位數(shù)字都是由前一位數(shù)字進行如上操作得到的.當?shù)?/span>1位數(shù)字是3時,仍按如上操作得到一個多位數(shù),則這個多位數(shù)前100位的所有數(shù)字之和是( )

A. 495 B. 497 C. 501 D. 503

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級有1200名學生,在體育考試前隨機抽取部分學生進行跳繩測試,根據(jù)測試成績制作了下面兩個統(tǒng)計圖.請根據(jù)相關信息,解答下列問題:

(Ⅰ)本次參加跳繩測試的學生人數(shù)為___________,圖①中的值為___________;

(Ⅱ)求本次調查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(Ⅲ)根據(jù)樣本數(shù)據(jù),估計該校九年級跳繩測試中得3分的學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在正方形ABCD,E在邊AD,F在邊BC的延長線上,AE=CF,連接ACEF.

(1)如圖①,求證:EF//AC;

(2)如圖②,EF與邊CD交于點G,連接BG,BE,

①求證:BAE≌△BCG;

②若BE=EG=4,BAE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一張紙片的形狀為直角三角形,其中∠C=90°,AC=12cmBC=16cm,沿直線AD折疊該紙片,使直角邊AC與斜邊上的AE重合,則CD的長為______cm

查看答案和解析>>

同步練習冊答案